我想开发堆叠式自动编码器或递归网络。这些是构建动态神经网络所必需的,它可以改变每次迭代的结构。
例如,我首先训练
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(784,500)
self.fc2 = nn.Linear(500,784)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return x
接下来,我想使用之前的fc1和fc2进行训练
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(784,500)
self.fc3 = nn.Linear(500,10)
self.fc4 = nn.Linear(10,500)
self.fc2 = nn.Linear(500,784)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc3(x))
x = F.relu(self.fc4(x))
x = F.relu(self.fc2(x))
return x
如何在单一模型中构建这些网络?
答案 0 :(得分:0)
您可以简单地为您的前向功能添加一个参数,该参数可以在您想要的两种可能性之间切换:
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(784,500)
self.fc3 = nn.Linear(500,10)
self.fc4 = nn.Linear(10,500)
self.fc2 = nn.Linear(500,784)
def forward(self, x, n_layers=2):
if 2 == n_layers:
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return x
elif 4 == n_layers:
x = F.relu(self.fc1(x))
x = F.relu(self.fc3(x))
x = F.relu(self.fc4(x))
x = F.relu(self.fc2(x))
return x
else:
raise Exception("Not implemented")