我想在一列中使用重复值来旋转数据框,以在新列中显示关联值,如下例所示。从Pandas文档中我无法弄清楚如何从这个... ...
name car model
rob mazda 626
rob bmw 328
james audi a4
james VW golf
tom audi a6
tom ford focus
对此...
name car_1 model_1 car_2 model_2
rob mazda 626 bmw 328
james audi a4 VW golf
tom audi a6 ford focus
答案 0 :(得分:3)
x = df.groupby('name')['car','model'] \
.apply(lambda x: pd.DataFrame(x.values.tolist(),
columns=['car','model'])) \
.unstack()
x.columns = ['{0[0]}_{0[1]}'.format(tup) for tup in x.columns]
结果:
In [152]: x
Out[152]:
car_0 car_1 model_0 model_1
name
james audi VW a4 golf
rob mazda bmw 626 328
tom audi ford a6 focus
如何对列进行排序:
In [157]: x.loc[:, x.columns.str[::-1].sort_values().str[::-1]]
Out[157]:
model_0 car_0 model_1 car_1
name
james a4 audi golf VW
rob 626 mazda 328 bmw
tom a6 audi focus ford
答案 1 :(得分:1)
我们可以使用groupby
和cumcount
i = df.groupby('name').cumcount() + 1
df.set_index(['name', i2]).unstack()
car model
1 2 1 2
name
james audi VW a4 golf
rob mazda bmw 626 328
tom audi ford a6 focus
或者我们可以折叠pd.MultiIndex
列
i = df.groupby('name').cumcount() + 1
d1 = df.set_index(['name', i2]).unstack().sort_index(1, 1)
d1.columns = d1.columns.to_series().map('{0[0]}_{0[1]}'.format)
d1
car_1 model_1 car_2 model_2
name
james audi a4 VW golf
rob mazda 626 bmw 328
tom audi a6 ford focus