如何使用dict创建新的DataFrame

时间:2017-05-03 05:09:09

标签: pyspark

我有一个dict,例如:

cMap = {"k1" : "v1", "k2" : "v1", "k3" : "v2", "k4" : "v2"}

和一个DataFrame A,如:

+---+
|key|
+----
| k1|
| k2|
| k3|
| k4|
+---+

使用代码

创建上面的DataFame
data = [('k1'),
    ('k2'),
    ('k3'),
    ('k4')]
A = spark.createDataFrame(data, ['key'])

我想获得新的DataFrame,例如:

+---+----------+----------+
|key|   v1     |    v2    |
+---+----------+----------+
| k1|true      |false     |
| k2|true      |false     |
| k3|false     |true      |
| k4|false     |true      |
+---+----------+----------+

我希望得到一些建议,谢谢!

6 个答案:

答案 0 :(得分:8)

我只想提供一种不同的,可能更简单的方法来解决这个问题。

在我的代码中,我将dict转换为pandas数据帧,我发现它更容易。然后我直接将pandas数据帧转换为spark。

data = {'visitor': ['foo', 'bar', 'jelmer'], 
        'A': [0, 1, 0],
        'B': [1, 0, 1],
        'C': [1, 0, 0]}

df = pd.DataFrame(data)
ddf = spark.createDataFrame(df)

Output:
+---+---+---+-------+
|  A|  B|  C|visitor|
+---+---+---+-------+
|  0|  1|  1|    foo|
|  1|  0|  0|    bar|
|  0|  1|  0| jelmer|
+---+---+---+-------+

答案 1 :(得分:4)

字典可以转换为数据框并与其他字典连接。我的代码,

data = sc.parallelize([(k,)+(v,) for k,v in cMap.items()]).toDF(['key','val'])
keys = sc.parallelize([('k1',),('k2',),('k3',),('k4',)]).toDF(["key"])
newDF = data.join(keys,'key').select("key",F.when(F.col("val") == "v1","True").otherwise("False").alias("v1"),F.when(F.col("val") == "v2","True").otherwise("False").alias("v2"))

 >>> newDF.show()
 +---+-----+-----+
 |key|   v1|   v2|
 +---+-----+-----+
 | k1| True|False|
 | k2| True|False|
 | k3|False| True|
 | k4|False| True|
 +---+-----+-----+

如果有更多值,则可以将when子句编码为UDF并使用它。

答案 2 :(得分:4)

from pyspark import SparkContext,SparkConf

from pyspark.sql import SQLContext
sc = SparkContext()
spark = SQLContext(sc)
val_dict = {
            'key1':val1,
            'key2':val2,
            'key3':val3
            }

rdd = sc.parallelize([val_dict])

bu_zdf = spark.read.json(rdd)

答案 3 :(得分:2)

我并行cMap.items()并检查值是否等于v1v2。然后返回到列key

上的数据框A.
# example dataframe A
df_A = spark.sparkContext.parallelize(['k1', 'k2', 'k3', 'k4']).map(lambda x: Row(**{'key': x})).toDF()

cmap_rdd = spark.sparkContext.parallelize(cMap.items())
cmap_df = cmap_rdd.map(lambda x: Row(**dict([('key', x[0]), ('v1', x[1]=='v1'), ('v2', x[1]=='v2')]))).toDF()

df_A.join(cmap_df, on='key').orderBy('key').show()

<强>数据帧

+---+-----+-----+
|key|   v1|   v2|
+---+-----+-----+
| k1| true|false|
| k2| true|false|
| k3|false| true|
| k4|false| true|
+---+-----+-----+

答案 4 :(得分:1)

感谢大家提出一些建议,我想出了用pivot解决问题的另一种方法,代码是:

cMap = {"k1" : "v1", "k2" : "v1", "k3" : "v2", "k4" : "v2"}
a_cMap = [(k,)+(v,) for k,v in cMap.items()] 
data = spark.createDataFrame(a_cMap, ['key','val'])

from pyspark.sql.functions import count
data = data.groupBy('key').pivot('val').agg(count('val'))
data.show()

+---+----+----+
|key|  v1|  v2|
+---+----+----+
| k2|   1|null|
| k4|null|   1|
| k1|   1|null|
| k3|null|   1|
+---+----+----+

data = data.na.fill(0)
data.show()

+---+---+---+
|key| v1| v2|
+---+---+---+
| k2|  1|  0|
| k4|  0|  1|
| k1|  1|  0|
| k3|  0|  1|
+---+---+---+

keys = spark.createDataFrame([('k1','2'),('k2','3'),('k3','4'),('k4','5'),('k5','6')], ["key",'temp'])

newDF = keys.join(data,'key')
newDF.show()
+---+----+---+---+
|key|temp| v1| v2|
+---+----+---+---+
| k2|   3|  1|  0|
| k4|   5|  0|  1|
| k1|   2|  1|  0|
| k3|   4|  0|  1|
+---+----+---+---+

但是,我无法将1转换为true,将0转换为false。

答案 5 :(得分:0)

我只是想添加一种使用pyspark创建DF的简单方法

values = [("K1","true","false),("K2","true","false)]
columns = ['Key', 'V1', 'V2']
df = spark.createDataFrame(values, columns)