我试图代表一个护理网络(disease -> hospital
)。我使用visNetwork。这是我网络上的一些细节:2540个顶点和15776个边缘。这里只使用1000条边的结果:
而只有500条边可读:
在允许这些图表的代码之后:
visNetwork(nodes=vn_nodes,edges = vn_edges, height = "1000px",width="100%")%>%
visPhysics(enabled = FALSE)%>%
visLayout(randomSeed = 12)
我玩了一些选项,但没有结果。任何让它变得有用的想法或者我是否需要更改包装(我已经尝试过networkD3而没有真正满意)?
编辑:(添加一些数据)
>vn_nodes
label id title group
3 INSEE06004 2469 123 I
4 INSEE06088 2470 2393 I
5 INSEE10387 2471 91 I
6 INSEE13055 2472 75 I
7 INSEE13056 2473 54 I
8 INSEE13205 2474 4192 I
9 INSEE14118 2475 443 I
11 INSEE20004 2477 13 I
12 INSEE20033 2478 32 I
13 INSEE21231 2479 2309 I
14 INSEE25056 2480 35 I
15 INSEE28085 2481 48 I
16 INSEE29019 2482 2266 I
18 INSEE30189 2484 194 I
19 INSEE33063 2485 3080 I
20 INSEE34172 2486 5245 I
21 INSEE35238 2487 3869 I
22 INSEE37261 2488 2639 I
23 INSEE38516 2489 2493 I
25 INSEE44109 2491 3083 I
26 INSEE49007 2492 1330 I
27 INSEE51454 2493 1144 I
28 INSEE54395 2494 1304 I
30 INSEE54547 2496 1839 I
31 INSEE56260 2497 412 I
33 INSEE59183 2499 220 I
34 INSEE59350 2500 7339 I
35 INSEE59606 2501 351 I
36 INSEE60340 2502 32 I
37 INSEE62041 2503 706 I
38 INSEE62160 2504 10 I
39 INSEE62498 2505 1019 I
40 INSEE63113 2506 1526 I
41 INSEE64102 2507 50 I
42 INSEE64445 2508 15 I
43 INSEE67482 2509 3382 I
44 INSEE69029 2510 2905 I
45 INSEE71076 2511 71 I
46 INSEE72181 2512 1312 I
47 INSEE75112 2513 460 I
48 INSEE75113 2514 342 I
50 INSEE75115 2516 3333 I
51 INSEE75118 2517 15 I
52 INSEE75119 2518 6813 I
53 INSEE78498 2519 84 I
54 INSEE80021 2520 2378 I
55 INSEE83050 2521 116 I
56 INSEE83137 2522 285 I
57 INSEE84007 2523 132 I
58 INSEE86194 2524 1351 I
59 INSEE89024 2525 68 I
61 INSEE92024 2527 5 I
62 INSEE92025 2528 101 I
63 INSEE93010 2529 87 I
64 INSEE94028 2530 560 I
65 INSEE95500 2531 126 I
66 INSEE97120 2532 464 I
67 INSEE97209 2533 229 I
69 INSEE97302 2535 389 I
70 INSEE97311 2536 233 I
71 INSEE97416 2537 895 I
72 INSEE98735 2538 121 I
73 INSEE98818 2539 44 I
74 ORPHA10 35 3 O
89 ORPHA100 374 3 O
108 ORPHA100011 1510 1 O
110 ORPHA100013 2179 1 O
111 ORPHA100031 1038 1 O
120 ORPHA100033 2461 1 O
121 ORPHA100043 1946 1 O
122 ORPHA100092 1170 1 O
124 ORPHA1001 136 4 O
140 ORPHA100973 27 7 O
158 ORPHA100980 761 5 O
171 ORPHA100981 1649 3 O
175 ORPHA100982 1342 4 O
181 ORPHA101 2142 2 O
182 ORPHA101016 762 1 O
192 ORPHA101023 289 1 O
218 ORPHA101029 1912 1 O
219 ORPHA101033 1708 1 O
220 ORPHA101038 1010 1 O
226 ORPHA101039 763 4 O
232 ORPHA101063 764 1 O
238 ORPHA101070 1511 2 O
244 ORPHA101075 1512 1 O
247 ORPHA101076 1513 1 O
250 ORPHA101081 834 3 O
265 ORPHA101082 1786 1 O
267 ORPHA101088 1913 3 O
268 ORPHA101090 1861 1 O
270 ORPHA101097 1343 1 O
272 ORPHA101150 1344 1 O
275 ORPHA101330 765 1 O
278 ORPHA101685 290 4 O
329 ORPHA1018 1810 2 O
330 ORPHA101944 1011 1 O
334 ORPHA101950 766 1 O
335 ORPHA1020 1391 1 O
336 ORPHA102002 291 3 O
355 ORPHA102009 1012 1 O
358 ORPHA102010 767 1 O
366 ORPHA102013 292 2 O
368 ORPHA102283 28 31 O
418 ORPHA102284 29 4 O
469 ORPHA102285 293 1 O
517 ORPHA102369 30 12 O
555 ORPHA102373 1345 1 O
556 ORPHA1027 2019 1 O
557 ORPHA103 375 1 O
573 ORPHA1031 1241 1 O
578 ORPHA1034 137 1 O
609 ORPHA1037 138 3 O
627 ORPHA103918 1787 1 O
628 ORPHA104 1043 3 O
647 ORPHA104003 2127 1 O
648 ORPHA104007 1171 1 O
651 ORPHA104009 2128 1 O
653 ORPHA104010 1788 1 O
656 ORPHA104013 1789 1 O
657 ORPHA104075 2288 1 O
658 ORPHA1041 890 3 O
674 ORPHA1046 1811 1 O
675 ORPHA1047 1555 1 O
676 ORPHA1048 891 4 O
697 ORPHA105 1356 1 O
704 ORPHA1052 325 1 O
723 ORPHA1053 1556 1 O
726 ORPHA1054 494 1 O
731 ORPHA1055 1392 1 O
732 ORPHA1057 1242 1 O
735 ORPHA1059 1670 1 O
738 ORPHA106 7 7 O
789 ORPHA1062 1671 1 O
790 ORPHA1064 2218 1 O
791 ORPHA1065 1557 1 O
796 ORPHA1068 2260 1 O
797 ORPHA107 48 12 O
830 ORPHA1071 345 10 O
844 ORPHA1072 1393 1 O
846 ORPHA1081 495 1 O
848 ORPHA1083 496 1 O
853 ORPHA1084 1558 3 O
856 ORPHA1088 2429 1 O
857 ORPHA108959 1709 1 O
859 ORPHA108961 1990 1 O
860 ORPHA108963 1013 1 O
861 ORPHA108967 1014 1 O
865 ORPHA108969 1947 2 O
868 ORPHA108971 1514 1 O
872 ORPHA108973 2129 1 O
873 ORPHA108977 294 1 O
877 ORPHA108979 1991 1 O
878 ORPHA108981 768 1 O
890 ORPHA108983 1650 1 O
892 ORPHA108985 355 1 O
898 ORPHA108989 1515 1 O
910 ORPHA108991 1172 2 O
913 ORPHA109 376 1 O
923 ORPHA109007 295 3 O
940 ORPHA109009 769 1 O
946 ORPHA109011 296 1 O
969 ORPHA11 836 1 O
972 ORPHA110 49 1 O
1003 ORPHA1104 1243 1 O
1004 ORPHA111 1044 2 O
1010 ORPHA1114 497 1 O
1017 ORPHA1117 2313 2 O
1018 ORPHA1118 1953 1 O
1021 ORPHA112 50 2 O
1033 ORPHA1125 1077 1 O
1039 ORPHA1126 1672 1 O
1040 ORPHA113 1207 1 O
1042 ORPHA1132 498 2 O
1045 ORPHA1134 1078 1 O
1046 ORPHA1135 2219 1 O
1047 ORPHA1136 1394 1 O
1061 ORPHA1138 1673 1 O
1062 ORPHA1143 1079 1 O
答案 0 :(得分:0)
您可以定义碰撞和其他选项,以便标签不会覆盖scaling.label.enabled
从网络的精美文档中检查所有选项。 enter link description here
答案 1 :(得分:0)
我不能使用排斥因为我已禁用
FWIW,以下是您可以尝试所有different layout algorithms及其参数化的方法:
library(igraph)
library(visNetwork)
library(qgraph)
g <- graph_from_data_frame(vn_edges)
V(g)$color <- bipartite.mapping(g)$type + 1L
V(g)$title <- V(g)$name
set.seed(1)
coords <- qgraph.layout.fruchtermanreingold(
as_edgelist(g, names = F),
weights=E(g)$value,
vcount=vcount(g),
area=vcount(g)^2,
repulse.rad=vcount(g)^3
)
visIgraph(g) %>%
visEdges(width = "value", title="value", color = list(highlight="#ff0000", opacity = .8)) %>%
visIgraphLayout("layout.norm", layoutMatrix = coords)