我正在处理一些运输数据,其中包含有关船舶航行的信息。每次航行都有自己的身份证,通常一艘船在某个港口开始航行,在相同或不同的港口装载货物,然后在某个港口卸货。有时,在装载或卸载货物之前,船舶也可能必须在港口等待。此外,船舶可以在多个港口卸货。我的数据集的前10行如下:
structure(list(Fkey_Dim_Voyage_Id = c(1228L, 1228L, 1228L, 1656L,
1656L, 1656L, 1675L, 1675L, 1675L, 1675L), Imos_VoyNo = c(19L,
19L, 19L, 16L, 16L, 16L, 7L, 7L, 7L, 7L), ord_no_int = c(100,
300, 500, 100, 200, 700, 100, 300, 500, 600), Fkey_Dim_PortFunction_Id = c("Commencing",
"Loading", "Discharging", "Commencing", "Loading", "Discharging",
"Commencing", "Loading", "Discharging", "Discharging"), PortName = c("CHESAPEAKE",
"CHESAPEAKE", "IMMINGHAM", "BELLEDUNE", "PORT CARTIER", "IMMINGHAM",
"AUGHINISH", "NORFOLK", "LA SPEZIA", "FUSINA"), Fkey_Dim_Vessel_Id = c(1179L,
1179L, 1179L, 144L, 144L, 144L, 1124L, 1124L, 1124L, 1124L),
Date_Arrival = structure(c(978307200, 1511927640, 1513400760,
978307200, 1510578000, 1511956800, 978307200, 1511611260,
1513713600, 1515225600), class = c("POSIXct", "POSIXt"), tzone = "UTC"),
Date_Departure = structure(c(1511945640, 1512267840, 1516425480,
1510489380, 1510765200, 1513359300, 1510665120, 1512283320,
1514903400, 1515664800), class = c("POSIXct", "POSIXt"), tzone = "UTC"),
Latitude = c(36.45, 36.45, 53.38, 47.54, 50, 53.38, 52.38,
36.51, 44.06, 45.25), Longitude = c(-76.15, -76.15, -0.11,
-65.45, -66.47, -0.11, -9.03, -76.18, 9.49, 12.16)), row.names = c(NA,
-10L), class = c("grouped_df", "tbl_df", "tbl", "data.frame"), vars = c("Fkey_Dim_Voyage_Id",
"Imos_VoyNo"), drop = TRUE, indices = list(0:2, 3:5, 6:9), group_sizes = c(3L,
3L, 4L), biggest_group_size = 4L, labels = structure(list(Fkey_Dim_Voyage_Id = c(1228L,
1656L, 1675L), Imos_VoyNo = c(19L, 16L, 7L)), row.names = c(NA,
-3L), class = "data.frame", vars = c("Fkey_Dim_Voyage_Id", "Imos_VoyNo"
), drop = TRUE))
我正在尝试使用R中的visNetwork
或igraph
个包将这些信息可视化为网络图。但是为了做到这一点,我想将PortName
变量分成From
和To
变量并维护端口功能的属性,即。开始,加载,等待或放电。我徒劳地尝试使用for
循环来迭代每个唯一的Voyage ID来实现这一点。不值得分享破碎的代码。任何指针或建议都会有所帮助。
答案 0 :(得分:1)
我将您在问题中提供的数据加载到名为Voyage
的data.frame中。假设您的数据按照示例中的顺序排序(行程的某些部分是连续的并且按顺序排列),我们只需要链接与下一行具有相同Fkey_Dim_Voyage_Id
的记录的端口。
library(igraph)
Leg = which(Voyage$Fkey_Dim_Voyage_Id[-1] == head(Voyage$Fkey_Dim_Voyage_Id, -1))
FROM = Voyage$PortName[Leg]
TO = Voyage$PortName[Leg+1]
Routes = data.frame(FROM, TO)
G = graph_from_data_frame(Routes)
plot(G)
答案 1 :(得分:0)
以下强制按Fkey_Dim_Voyage_Id
和ord_no_int
进行预排序,以便生成干净的图表:
library(ggraph)
library(tidygraph)
library(tidyverse)
df %>%
group_by(Fkey_Dim_Voyage_Id) %>%
arrange(Fkey_Dim_Voyage_Id, ord_no_int) %>%
mutate(from = PortName,
to = lead(PortName)) %>%
rename(PortFunction = Fkey_Dim_PortFunction_Id) %>%
as_tbl_graph(directed = TRUE) %>%
ggraph(., layout = 'linear', circular = TRUE) +
geom_edge_fan(aes(start_cap = circle(4, 'mm'),
end_cap = circle(4, 'mm'),
color = PortFunction),
arrow = arrow(length = unit(4, 'mm'))) +
geom_node_text(aes(label = name), size = 3) +
geom_edge_loop(aes(color = PortFunction),
arrow = arrow(length = unit(4, 'mm'))) +
coord_fixed(ratio = 3/5) +
theme_graph()
通过利用tidygraph
+ ggraph
,您可以灵活地为节点和边缘表示和添加美学。例如,看看当您从geom_edge_fan
更改为geom_edge_link
时会发生什么。