library(h2o)
h2o.init(nthreads=-1)
test <- h2o.importFile(path = "C:/Users/AkshayJ/Documents/newapril/data/testdata.csv")
train <- h2o.importFile(path = "C:/Users/AkshayJ/Documents/newapril/data/traindata.csv")
y <- "Label"
train[,y] <- as.factor(train[,y])
test[,y] <- as.factor(test[,y])
train[,"Allele1Top"] <- as.factor(train[,"Allele1Top"])
test[,"Allele1Top"] <- as.factor(test[,"Allele1Top"])
train[,"Allele2Top"] <- as.factor(train[,"Allele2Top"])
test[,"Allele2Top"] <- as.factor(test[,"Allele2Top"])
train[,"Allele1Forward"] <- as.factor(train[,"Allele1Forward"])
test[,"Allele1Forward"] <- as.factor(test[,"Allele1Forward"])
train[,"Allele2Forward"] <- as.factor(train[,"Allele2Forward"])
test[,"Allele2Forward"] <- as.factor(test[,"Allele2Forward"])
train[,"Allele1AB"] <- as.factor(train[,"Allele1AB"])
test[,"Allele1AB"] <- as.factor(test[,"Allele1AB"])
train[,"Allele2AB"] <- as.factor(train[,"Allele2AB"])
test[,"Allele2AB"] <- as.factor(test[,"Allele2AB"])
train[,"Chr"] <- as.factor(train[,"Chr"])
test[,"Chr"] <- as.factor(test[,"Chr"])
train[,"SNP"] <- as.factor(train[,"SNP"])
test[,"SNP"] <- as.factor(test[,"SNP"])
x <- setdiff(names(train),y)
model <- h2o.deeplearning(
x = x,
y = y,
training_frame = train,
validation_frame = test,
distribution = "multinomial",
activation = "RectifierWithDropout",
hidden = c(32,32,32),
input_dropout_ratio = 0.2,
sparse = TRUE,
l1 = 1e-5,
epochs = 10)
predic <- h2o.predict(model, newdata = test)
table(pred=predic, true = test[,21])
一切都很好,但最后一行 table(pred = predic,true = test [,21]) 给出了错误 unique.default(x,nmax = nmax)出错: 向量分配中的类型/长度(环境/ 0)无效
答案 0 :(得分:4)
使用函数h2o.confusionMatrix()
获取混淆矩阵。简单的方法是给它模型和你想要分析的数据:
h2o.confusionMatrix(model, test)
如果查看?h2o.confusionMatrix
,您会发现它也可以接受H2OModelMetrics
个对象。您可以通过致电h2o.performance()
来获得其中一个:
p = h2o.performance(model, test)
h2o.confusionMatrix(p)
我建议采用第二种方式,因为p
对象包含有关模型有多好的其他有用信息。
注意:无论哪种方式,您都没有使用预测。基本上是:
h2o.performance
如果您想分析模型的质量。h2o.predict
如果你想得到实际的预测。