我试图比较2个字符串列表的相似性,并将它们显示在pandas数据框中以供检查;所以我使用1个列表作为索引,另一个作为列列表。然后我想计算它们的“Levenshtein相似性”(比较两个单词之间的相似性的函数)。
我试图通过使用apply map来实现这一目标,它将进入每个单元格,并将单元格索引与单元格列进行比较。但我怎么能这样做?或者可能会有一些更简单的方法?
things = ['car', 'bike', 'sidewalk', 'eatery']
action = ['walking', 'caring', 'biking', 'eating']
matrix = pd.DataFrame(index = things, columns = action)
def lev(x):
x = Levenshtein.distance(x.index, x.column)
matrix.applymap(lev)
到目前为止,我使用了以下(下面),但我发现它笨拙而且很慢
matrix = pd.DataFrame(data = [action for i in things], index = things, columns = action)
for i, values in matrix.iterrows():
for j, value in enumerate(values):
matrix.ix[i,j] = Levenshtein.distance(i, value)
答案 0 :(得分:8)
我认为您可以使用apply
,而对于列值,请使用.name
:
def lev(x):
#replace your function
return x.index + x.name
a = matrix.apply(lev)
print (a)
walking caring biking eating
car carwalking carcaring carbiking careating
bike bikewalking bikecaring bikebiking bikeeating
sidewalk sidewalkwalking sidewalkcaring sidewalkbiking sidewalkeating
eatery eaterywalking eaterycaring eaterybiking eateryeating
编辑:
如果需要一些arithemtic操作使用broadcasting:
a = pd.DataFrame(matrix.index.values + matrix.columns.values[:,None],
index=matrix.index,
columns=matrix.columns)
print (a)
walking caring biking eating
car carwalking bikewalking sidewalkwalking eaterywalking
bike carcaring bikecaring sidewalkcaring eaterycaring
sidewalk carbiking bikebiking sidewalkbiking eaterybiking
eatery careating bikeeating sidewalkeating eateryeating
或者:
a = pd.DataFrame(matrix.index.values + matrix.columns.values[:, np.newaxis],
index=matrix.index,
columns=matrix.columns)
print (a)
walking caring biking eating
car carwalking bikewalking sidewalkwalking eaterywalking
bike carcaring bikecaring sidewalkcaring eaterycaring
sidewalk carbiking bikebiking sidewalkbiking eaterybiking
eatery careating bikeeating sidewalkeating eateryeating
答案 1 :(得分:4)
您可以通过“嵌套apply
”来做到这一点,如下所示:
things = ['car', 'bike', 'sidewalk', 'eatery']
action = ['walking', 'caring', 'biking', 'eating']
matrix = pd.DataFrame(index=things, columns=action)
matrix.apply(lambda x: pd.DataFrame(x).apply(lambda y: LD(x.name, y.name), axis=1))
输出:
walking caring biking eating
car 6 3 6 5
bike 6 5 3 5
sidewalk 7 8 7 8
eatery 6 5 6 3
这里的调用pd.DataFrame(x)
是因为x
是Series
对象,而Series.apply
与applymap
类似,它不携带{{1} }或index
信息。