我试图跳过一些值不正确的行。
以下是我在不使用skiprows参数的情况下从文件中读取数据的数据。
>> df
MstrRecNbrTxt UnitIDNmb PersonIDNmb PersonTypeCde
2194593 P NaN NaN NaN
2194594 300146901 1.0 1.0 1.0
4100689 DAT NaN NaN NaN
4100690 300170330 1.0 1.0 1.0
5732515 DA NaN NaN NaN
5732516 300174170 2.0 1.0 1.0
我想跳过行2194593,4100689和5732515.我希望在表格中看不到我读过的那些行。
>> df = pd.read_csv(file,sep='|',low_memory=False,
usecols= cols_to_use,
skiprows=[2194593,4100689,5732515])
然而,当我再次打印时,那些行仍在那里。
>> df
MstrRecNbrTxt UnitIDNmb PersonIDNmb PersonTypeCde
2194593 P NaN NaN NaN
2194594 300146901 1.0 1.0 1.0
4100689 DAT NaN NaN NaN
4100690 300170330 1.0 1.0 1.0
5732515 DA NaN NaN NaN
5732516 300174170 2.0 1.0 1.0
以下是数据:
{'PersonIDNmb': {2194593: nan,
2194594: 1.0,
4100689: nan,
4100690: 1.0,
5732515: nan,
5732516: 1.0},
'PersonTypeCde': {2194593: nan,
2194594: 1.0,
4100689: nan,
4100690: 1.0,
5732515: nan,
5732516: 1.0},
'UnitIDNmb': {2194593: nan,
2194594: 1.0,
4100689: nan,
4100690: 1.0,
5732515: nan,
5732516: 2.0},
'\ufeffMstrRecNbrTxt': {2194593: 'P',
2194594: '300146901',
4100689: 'DAT',
4100690: '300170330',
5732515: 'DA',
5732516: '300174170'}}
我做错了什么?
我的最终目标是摆脱我的数据帧中的NaN值,以便数据可以作为整数而不是浮点数读取(因为这使得将此表连接到其他非浮点表很困难)。 / p>
答案 0 :(得分:3)
工作示例......希望这有帮助!
iterations