我有一张Spark表:
simx
x0: num 1.00 2.00 3.00 ...
x1: num 2.00 3.00 4.00 ...
...
x788: num 2.00 3.00 4.00 ...
和R环境中名为simX_tbl
的句柄连接到此simx
表。
我想为这个表做一个居中,它用列的方法减去每一列。例如,计算x0 - mean(x0)
,依此类推。
到目前为止,我的最大努力是:
meanX <- simX_tbl %>% summarise_all(funs("mean")) %>% collect()
x_centered <- simX_tbl
for(i in 1:789) {
colName <- paste0("x", i-1)
colName2 <- lazyeval::interp(~ a - b, a = as.name(colName), b = as.double(meanX[i]))
x_centered <- x_centered %>% mutate_(.dots = setNames( list(colName2) , colName) )
}
当我限制for
循环几次迭代(1:5
)x_centered %>% head
结果正确时,这实际上有效。但是,当我为789次迭代执行此操作时,当我尝试head
时出现此错误:
Error: C stack usage 7969412 is too close to the limit
以下是我已经尝试过的显示C堆栈使用错误的输出方法:
x_centered %>% head #show first 6 rows
x_centered %>% select_("x0") #select first column only
x_centered %>% sdf_register("x_centered") #register as table
x_centered %>% spark_dataframe() %>% tbl(sc, "x_centered") #also register as table
spark_write_csv(x_centered, path = "hdfs/path/here") #write as csv
稍后我需要计算每列的相关系数,但我认为我不能输出这个错误。
有没有办法正确/高效地进行这种定心?我阅读了关于提高Cstack限制的this question,但我不认为这是一个解决方案,因为数据非常大,并且存在更大数据的超限风险。实际数据为40GB +,我目前使用的数据只是一个小样本(789列×10000行)。
Spark版本是1.6.0
编辑:使标题更清晰,添加尝试过的输出方法
答案 0 :(得分:2)
您只需使用mutate_each
/ muate_all
library(dplyr)
df <- data.frame(x=c(1, 2, 3), y = c(-4, 5, 6), z = c(42, 42, 42))
sdf <- copy_to(sc, df, overwrite=TRUE)
mutate_all(sdf, funs(. - mean(.)))
Source: query [3 x 3]
Database: spark connection master=local[*] app=sparklyr local=TRUE
x y z
<dbl> <dbl> <dbl>
1 -1 -6.333333 0
2 0 2.666667 0
3 1 3.666667 0
但看起来它已扩展为非常低效(大型数据集不可接受)窗口功能应用程序。使用更详细的解决方案可能会更好:
avgs <- summarize_all(sdf, funs(mean)) %>% as.data.frame()
exprs <- as.list(paste(colnames(sdf),"-", avgs))
sdf %>%
spark_dataframe() %>%
invoke("selectExpr", exprs) %>%
invoke("toDF", as.list(colnames(sdf))) %>%
invoke("registerTempTable", "centered")
tbl(sc, "centered")
Source: query [3 x 3]
Database: spark connection master=local[*] app=sparklyr local=TRUE
x y z
<dbl> <dbl> <dbl>
1 -1 -6.333333 0
2 0 2.666667 0
3 1 3.666667 0
它没有dplyr
方法那么漂亮,但与之前的方法不同,这是一个明智的做法。
如果您想跳过所有invokes
,可以dplyr
使用同一件事:
transmute_(sdf, .dots = setNames(exprs, colnames(sdf)))
Source: query [3 x 3]
Database: spark connection master=local[*] app=sparklyr local=TRUE
x y z
<dbl> <dbl> <dbl>
1 -1 -6.333333 0
2 0 2.666667 0
3 1 3.666667 0
执行计划:
帮助函数(另请参阅物理计划的dbplyr::remote_query
):
optimizedPlan <- function(df) {
df %>%
spark_dataframe() %>%
invoke("queryExecution") %>%
invoke("optimizedPlan")
}
dplyr
版本:
mutate_all(sdf, funs(. - mean(.))) %>% optimizedPlan()
<jobj[190]>
class org.apache.spark.sql.catalyst.plans.logical.Project
Project [x#2877, y#2878, (z#1123 - _we0#2894) AS z#2879]
+- Window [avg(z#1123) windowspecdefinition(ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS _we0#2894]
+- Project [x#2877, (y#1122 - _we0#2892) AS y#2878, z#1123]
+- Window [avg(y#1122) windowspecdefinition(ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS _we0#2892]
+- Project [(x#1121 - _we0#2890) AS x#2877, z#1123, y#1122]
+- Window [avg(x#1121) windowspecdefinition(ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS _we0#2890]
+- Project [y#1122, z#1123, x#1121]
+- InMemoryRelation [x#1121, y#1122, z#1123], true, 10000, StorageLevel(disk, memory, deserialized, 1 replicas), `df`
: +- *Scan csv [x#1121,y#1122,z#1123] Format: CSV, InputPaths: file:/tmp/RtmpiEECCe/spark_serialize_f848ebf3e065c9a204092779c3e8f32ce6afdcb6e79bf6b9868ae9ff198a..., PartitionFilters: [], PushedFilters: [], ReadSchema: struct<x:double,y:double,z:double>
Spark解决方案:
tbl(sc, "centered") %>% optimizedPlan()
<jobj[204]>
class org.apache.spark.sql.catalyst.plans.logical.Project
Project [(x#1121 - 2.0) AS x#2339, (y#1122 - 2.33333333333333) AS y#2340, (z#1123 - 42.0) AS z#2341]
+- InMemoryRelation [x#1121, y#1122, z#1123], true, 10000, StorageLevel(disk, memory, deserialized, 1 replicas), `df`
: +- *Scan csv [x#1121,y#1122,z#1123] Format: CSV, InputPaths: file:/tmp/RtmpiEECCe/spark_serialize_f848ebf3e065c9a204092779c3e8f32ce6afdcb6e79bf6b9868ae9ff198a..., PartitionFilters: [], PushedFilters: [], ReadSchema: struct<x:double,y:double,z:double>
dplyr
已优化:
transmute_(sdf, .dots = setNames(exprs, colnames(sdf))) %>% optimizedPlan()
<jobj[272]>
class org.apache.spark.sql.catalyst.plans.logical.Project
Project [(x#1121 - 2.0) AS x#4792, (y#1122 - 2.33333333333333) AS y#4793, (z#1123 - 42.0) AS z#4794]
+- InMemoryRelation [x#1121, y#1122, z#1123], true, 10000, StorageLevel(disk, memory, deserialized, 1 replicas), `df`
: +- *Scan csv [x#1121,y#1122,z#1123] Format: CSV, InputPaths: file:/tmp/RtmpiEECCe/spark_serialize_f848ebf3e065c9a204092779c3e8f32ce6afdcb6e79bf6b9868ae9ff198a..., PartitionFilters: [], PushedFilters: [], ReadSchema: struct<x:double,y:double,z:double>
备注强>:
Spark SQL在处理宽数据集方面不是那么好。使用核心Spark,您通常会将功能组合到一个Vector
Column
中,Spark会提供许多变换器,可用于对Vector
数据进行操作。