我有一个由3个字段组成的文件(Emp_ids,Groups,Salaries)
我希望得到结果
1)组名和计数(*)
2)组名和最高(工资)
val myfile = "/home/hduser/ScalaDemo/Salary.txt"
val conf = new SparkConf().setAppName("Salary").setMaster("local[2]")
val sc= new SparkContext( conf)
val sal= sc.textFile(myfile)
答案 0 :(得分:2)
Scala DSL:
case class Data(empId: Int, group: String, salary: Int)
val df = sqlContext.createDataFrame(lst.map {v =>
val arr = v.split(' ').map(_.trim())
Data(arr(0).toInt, arr(1), arr(2).toInt)
})
df.show()
+-----+-----+------+
|empId|group|salary|
+-----+-----+------+
| 100| A| 430|
| 101| A| 500|
| 201| B| 300|
+-----+-----+------+
df.groupBy($"group").agg(count("*") as "count").show()
+-----+-----+
|group|count|
+-----+-----+
| A| 2|
| B| 1|
+-----+-----+
df.groupBy($"group").agg(max($"salary") as "maxSalary").show()
+-----+---------+
|group|maxSalary|
+-----+---------+
| A| 500|
| B| 300|
+-----+---------+
或使用纯SQL:
df.registerTempTable("salaries")
sqlContext.sql("select group, count(*) as count from salaries group by group").show()
+-----+-----+
|group|count|
+-----+-----+
| A| 2|
| B| 1|
+-----+-----+
sqlContext.sql("select group, max(salary) as maxSalary from salaries group by group").show()
+-----+---------+
|group|maxSalary|
+-----+---------+
| A| 500|
| B| 300|
+-----+---------+
虽然由于性能原因,建议使用Spark SQL进行此类聚合,但可以使用RDD API轻松完成:
val rdd = sc.parallelize(Seq(Data(100, "A", 430), Data(101, "A", 500), Data(201, "B", 300)))
rdd.map(v => (v.group, 1)).reduceByKey(_ + _).collect()
res0: Array[(String, Int)] = Array((B,1), (A,2))
rdd.map(v => (v.group, v.salary)).reduceByKey((s1, s2) => if (s1 > s2) s1 else s2).collect()
res1: Array[(String, Int)] = Array((B,300), (A,500))