答案 0 :(得分:4)
df = pd.DataFrame({0: [['hello', 'motto'], ['motto', 'mania']]})
print(df)
0
0 [hello, motto]
1 [motto, mania]
df[0].str.join('|').str.get_dummies()
hello mania motto
0 1 0 1
1 0 1 1
答案 1 :(得分:2)
这是一个节省内存的解决方案,它将使用稀疏矩阵和Pandas.SparseSeries:
from sklearn.feature_extraction.text import CountVectorizer
vect = CountVectorizer()
X = vect.fit_transform(df.pop(0).str.join(' '))
for i, col in enumerate(vect.get_feature_names()):
df[col] = pd.SparseSeries(X[:, i].toarray().ravel(), fill_value=0)
结果:
In [81]: df
Out[81]:
hello mania motto
0 1 0 1
1 0 1 1
In [82]: df.memory_usage()
Out[82]:
Index 80
hello 8 # notice memory usage: # of ones multiplied by 8 bytes (int64)
mania 8
motto 16
dtype: int64