此代码是Andrew Ng的机器学习课程的编程作业。
该函数期望行向量[J grad]
。代码计算J
(尽管错误,但这不是问题),我为grad
添加了一个虚拟值(因为我还没有编写代码来计算它)。当我运行代码时,它只输出ans
作为标量,其值为J
。 grad
去了哪里?
function [J grad] = nnCostFunction(nn_params, ...
input_layer_size, ...
hidden_layer_size, ...
num_labels, ...
X, y, lambda)
%NNCOSTFUNCTION Implements the neural network cost function for a two layer
%neural network which performs classification
% [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
% X, y, lambda) computes the cost and gradient of the neural network. The
% parameters for the neural network are "unrolled" into the vector
% nn_params and need to be converted back into the weight matrices.
%
% The returned parameter grad should be a "unrolled" vector of the
% partial derivatives of the neural network.
%
% Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
hidden_layer_size, (input_layer_size + 1));
Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
num_labels, (hidden_layer_size + 1));
% Setup some useful variables
m = size(X, 1);
% You need to return the following variables correctly
J = 0;
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2));
% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the code by working through the
% following parts.
%
% Part 1: Feedforward the neural network and return the cost in the
% variable J. After implementing Part 1, you can verify that your
% cost function computation is correct by verifying the cost
% computed in ex4.m
%
% Part 2: Implement the backpropagation algorithm to compute the gradients
% Theta1_grad and Theta2_grad. You should return the partial derivatives of
% the cost function with respect to Theta1 and Theta2 in Theta1_grad and
% Theta2_grad, respectively. After implementing Part 2, you can check
% that your implementation is correct by running checkNNGradients
%
% Note: The vector y passed into the function is a vector of labels
% containing values from 1..K. You need to map this vector into a
% binary vector of 1's and 0's to be used with the neural network
% cost function.
%
% Hint: We recommend implementing backpropagation using a for-loop
% over the training examples if you are implementing it for the
% first time.
%
% Part 3: Implement regularization with the cost function and gradients.
%
% Hint: You can implement this around the code for
% backpropagation. That is, you can compute the gradients for
% the regularization separately and then add them to Theta1_grad
% and Theta2_grad from Part 2.
%
% PART 1
a1 = [ones(m,1) X]; % set a1 to equal X and add column of 1's
z2 = a1 * Theta1'; % matrix times matrix [5000*401 * 401*25 = 5000*25]
a2 = [ones(m,1),sigmoid(z2)]; % sigmoid function on matrix [5000*26]
z3 = a2 * Theta2'; % matrix times matrix [5000*26 * 26*10 = 5000 * 10]
hox = sigmoid(z3); % sigmoid function on matrix [5000*10]
for k = 1:num_labels
yk = y == k; % using the correct column vector y each loop
J = J + sum(-yk.*log(hox(:,k)) - (1-yk).*log(1-hox(:,k)));
end
J = 1/m * J;
% -------------------------------------------------------------
% =========================================================================
% Unroll gradients
% grad = [Theta1_grad(:) ; Theta2_grad(:)];
grad = 6.6735;
end
答案 0 :(得分:2)
您已在函数声明中指定该函数可以同时返回多个输出值:
function [J grad] = nnCostFunction(nn_params, ... % etc
如果您通过分配变量矩阵而不是单个变量来“请求”它们,则可以捕获两个输出:
[a, b] = nnCostFunction(input1, input2, etc)
如果你不这样做,你实际上只是“请求”第一个返回的变量:
a = nnCostFunction(input1, input2, etc) % output 'b' is discarded.
如果您没有指定要分配的变量,默认情况下,八度音程会分配给“默认”变量ans
。所以它基本上等同于做
ans = nnCostFunction(input1, input2, etc) % output 'b' is discarded.
请参阅find
函数的文档(例如,在八度音阶终端中键入help find
)以查看此类函数的示例。
PS。如果您只想要第二个输出并且不想“浪费”第一个的变量名称,则可以通过将~
指定为第一个输出来执行此操作,例如:
[~, b] = nnCostFunction(input1, input2, etc) % output 'a' is discarded