我有以下几点:
df <- structure(list(gene_symbol = c("0610005C13Rik", "0610007P14Rik",
"0610009B22Rik", "0610009L18Rik", "0610009O20Rik", "0610010B08Rik"
), foo.control.cv = c(1.16204038288333, 0.120508045270669, 0.205712615954009,
0.504508040948641, 0.333956330117591, 0.543693011377001), foo.control.mean = c(2.66407458486012,
187.137728870855, 142.111269303428, 16.7278587043453, 69.8602872478098,
4.77769028710622), foo.treated.cv = c(0.905769898934564, 0.186441944401973,
0.158552512842753, 0.551955061149896, 0.15743983656006, 0.290447431974039
), foo.treated.mean = c(2.40658723367692, 180.846795140269, 139.054032348287,
11.8584348984435, 76.8141734599118, 2.24088124240385)), .Names = c("gene_symbol",
"foo.control.cv", "foo.control.mean", "foo.treated.cv", "foo.treated.mean"
), class = c("tbl_df", "tbl", "data.frame"), row.names = c(NA,
6L))
看起来像这样:
# A tibble: 6 × 5
gene_symbol foo.control.cv foo.control.mean foo.treated.cv foo.treated.mean
* <chr> <dbl> <dbl> <dbl> <dbl>
1 0610005C13Rik 1.1620404 2.664075 0.9057699 2.406587
2 0610007P14Rik 0.1205080 187.137729 0.1864419 180.846795
3 0610009B22Rik 0.2057126 142.111269 0.1585525 139.054032
4 0610009L18Rik 0.5045080 16.727859 0.5519551 11.858435
5 0610009O20Rik 0.3339563 69.860287 0.1574398 76.814173
6 0610010B08Rik 0.5436930 4.777690 0.2904474 2.240881
我想要做的是将mean
中的所有列名替换为mean_expr
。导致
gene_symbol foo.control.cv foo.control.mean_expr foo.treated.cv foo.treated.mean_expr
1 0610005C13Rik 1.1620404 2.664075 0.9057699 2.406587
2 0610007P14Rik 0.1205080 187.137729 0.1864419 180.846795
3 0610009B22Rik 0.2057126 142.111269 0.1585525 139.054032
4 0610009L18Rik 0.5045080 16.727859 0.5519551 11.858435
5 0610009O20Rik 0.3339563 69.860287 0.1574398 76.814173
6 0610010B08Rik 0.5436930 4.777690 0.2904474 2.240881
我怎样才能做到这一点?
答案 0 :(得分:23)
使用当前版本的dplyr,您可以使用rename_at
:
library(dplyr)
df %>% rename_at(vars(contains('mean')), funs(sub('mean', 'mean_expr', .)))
#> # A tibble: 6 × 5
#> gene_symbol foo.control.cv foo.control.mean_expr foo.treated.cv
#> * <chr> <dbl> <dbl> <dbl>
#> 1 0610005C13Rik 1.1620404 2.664075 0.9057699
#> 2 0610007P14Rik 0.1205080 187.137729 0.1864419
#> 3 0610009B22Rik 0.2057126 142.111269 0.1585525
#> 4 0610009L18Rik 0.5045080 16.727859 0.5519551
#> 5 0610009O20Rik 0.3339563 69.860287 0.1574398
#> 6 0610010B08Rik 0.5436930 4.777690 0.2904474
#> # ... with 1 more variables: foo.treated.mean_expr <dbl>
实际上,您也可以使用rename_all
,因为不匹配的名称无论如何都不会受到影响。此外,您可以使用rlang::as_function
.funs
来强制执行某个函数的quosure或任何函数,因此您可以使用purrr样式表示法:
df %>% rename_all(~sub('mean', 'mean_expr', .x))
由于数据框是一个列表,Movies of the Year jekyll github page的set_names
可以做同样的事情:
library(purrr) # or library(tidyverse)
df %>% set_names(~sub('mean', 'mean_expr', .x))
所有回报都是一样的。
答案 1 :(得分:5)
另一个选项是onclick
中的paste
(使用devel版本的dplyr)
rename_at
或使用library(dplyr)
df %>%
rename_at(vars(matches('mean')), funs(sprintf('%s_expr', .)))
# A tibble: 6 × 5
# gene_symbol foo.control.cv foo.control.mean_expr foo.treated.cv foo.treated.mean_expr
#* <chr> <dbl> <dbl> <dbl> <dbl>
#1 0610005C13Rik 1.1620404 2.664075 0.9057699 2.406587
#2 0610007P14Rik 0.1205080 187.137729 0.1864419 180.846795
#3 0610009B22Rik 0.2057126 142.111269 0.1585525 139.054032
#4 0610009L18Rik 0.5045080 16.727859 0.5519551 11.858435
#5 0610009O20Rik 0.3339563 69.860287 0.1574398 76.814173
#6 0610010B08Rik 0.5436930 4.777690 0.2904474 2.240881
rename_if
答案 2 :(得分:3)
这是一个非dplyr基R方法:
names(df) <- sub("mean$", "mean_expr", names(df))
# or names(df) <- sub("mean", "mean_expr", names(df)) if the mean doesn't have to be at the
# end of the string
names(df)
#[1] "gene_symbol" "foo.control.cv" "foo.control.mean_expr"
#[4] "foo.treated.cv" "foo.treated.mean_expr"
如果您希望它成为管道的一部分,您可以使用 setNames 功能:
df %>% setNames(sub("mean", "mean_expr", names(.))) %>% names(.)
#[1] "gene_symbol" "foo.control.cv" "foo.control.mean_expr"
#[4] "foo.treated.cv" "foo.treated.mean_expr"
答案 3 :(得分:2)
另一个选项是dplyr::select_all()
:
df %>% select_all(~gsub("mean", "mean_expr", .))
答案 4 :(得分:0)
通过使用magritrr
,您可以拥有
library(magrittr)
names(df)[df %>% names %>% grep(pattern = "mean")] %<>% paste0("_expr")
df
# A tibble: 6 x 5
gene_symbol foo.control.cv foo.control.mean_expr foo.treated.cv foo.treated.mean_expr
* <chr> <dbl> <dbl> <dbl> <dbl>
1 0610005C13Rik 1.16 2.66 0.906 2.41
2 0610007P14Rik 0.121 187. 0.186 181.
3 0610009B22Rik 0.206 142. 0.159 139.
4 0610009L18Rik 0.505 16.7 0.552 11.9
5 0610009O20Rik 0.334 69.9 0.157 76.8
6 0610010B08Rik 0.544 4.78 0.290 2.24