说我有一些价值观:
raw = tibble(
group = c("A", "B", "C", "A", "B", "C"),
value = c(10, 20, 30, 40, 50, 60)
)
# A tibble: 6 x 2
group value
<chr> <dbl>
1 A 10
2 B 20
3 C 30
4 A 40
5 B 50
6 C 60
我想从我的tibble中的每个值中减去一定数量,具体取决于它属于哪个组。我需要减去的金额是另一个元素:
corrections = tibble(
group = c("A", "B", "C"),
corr = c(0, 1, 2)
)
# A tibble: 3 x 2
group corr
<chr> <dbl>
1 A 0
2 B 1
3 C 2
实现这一目标的最优雅方式是什么?以下作品,但我觉得它很乱 - 当然还有另一种方式吗?
mutate(raw, corrected = value - as_vector(corrections[corrections["group"] == group, "corr"]))
# A tibble: 6 x 3
group value corrected
<chr> <dbl> <dbl>
1 A 10 10
2 B 20 19
3 C 30 28
4 A 40 40
5 B 50 49
6 C 60 58
答案 0 :(得分:1)
首先加入raw
和corrections
然后计算corrected
怎么样?
library(dplyr)
left_join(raw, corrections, by = "group") %>%
mutate(corrected = value - corr) %>%
select(-corr)
#> # A tibble: 6 x 3
#> group value corrected
#> <chr> <dbl> <dbl>
#> 1 A 10 10
#> 2 B 20 19
#> 3 C 30 28
#> 4 A 40 40
#> 5 B 50 49
#> 6 C 60 58