对于微分方程private Map<String,String> values;
(其中mx'' + kx = 0
是x''
相对于x
的双重导数),如何为t
求解?我的意思是如何得到这个等式:
x(t)
我尝试了什么:
x(t) = c1*cos(sqrt(k/m)*t) + c2*sin(sqrt(k/m)*t)
但声明t, g, k, m, w0, a_0, b_0, c1, c2 = symbols('t g k m w0 a_0 b_0 c1 c2')
x = symbols('x', cls=Function)
w0 = sqrt(k/m)
diffeq = Eq(x(t).diff(t, t) + k*x, 0)
会抛出错误:
diffeq = Eq(x(t).diff(t, t) + k*x, 0)
答案 0 :(得分:0)
我使其工作并且能够解决系数C1
和C2
的等式。这是代码:
t, a0, b0, k, m, g = symbols('t a0 b0 k m g')
x = Function('f')
diffeq = m*Derivative(x(t), t, t) + k*x(t) + m*g
# print(diffeq)
x_sl30 = dsolve(diffeq, x(t)).rhs
print(x_sl30)
# Initial condition, x(0) = a0 and x'(0) = b0
c_0 = Eq(x_sl30.subs(t, 0), a0)
c_1 = Eq(x_sl30.diff(t).subs(t, 0), b0)
# print(c_0)
# print(c_1)
C1, C2 = symbols("C1, C2")
C1C2_sl = solve([c_0, c_1], (C1, C2))
#Substitute the value of C1 and C2 in the original equation
x_sl31 = x_sl30.subs(C1C2_sl)
print(x_sl31)