tf.set_random_seed()无效,未找到选择种子。
对于LSTM中的许多参数,似乎在tf.nn.rnn_cell.BasicLSTMCell中找不到opt seed。因此,每次产生不同的结果。如何设置种子以产生相同的运行次数?
import numpy as np
import tensorflow as tf
from tensorflow.python.ops import rnn, rnn_cell
if __name__ == '__main__':
np.random.seed(1234)
X = np.array(np.array(range(1,121)).reshape(4, 6, 5), dtype = float)
x0 = tf.placeholder(tf.float32, [4, 6, 5])
x = tf.reshape(x0, [-1, 5])
x = tf.split(0, 4, x)
with tf.variable_scope('lstm') as scope:
lstm = tf.nn.rnn_cell.BasicLSTMCell(5, state_is_tuple = True)
outputs, states = tf.nn.rnn(lstm, x, dtype = tf.float32)
scope.reuse_variables()
outputs2, states2 = tf.nn.dynamic_rnn(lstm, x0, dtype=tf.float32,time_major = True)
outputs3, states3 = tf.nn.rnn(lstm, x, dtype=tf.float32)
print(outputs3)
with tf.Session() as sess:
tf.set_random_seed(1)
init = tf.initialize_all_variables()
sess.run(init)
for var in tf.trainable_variables():
print var.name
for i in range(3):
result1, result2, result3 = sess.run([outputs, outputs2, outputs3], feed_dict = {x0: X})
print result1
print '---------------------------------------'
print result2
print '---------------------------------------'
print result3
print '---------------------------------------'
答案 0 :(得分:0)
我认为这应该有效"正如所料"在tensorflow nightly builds。请尝试使用TF每晚构建并报告回来:
哦,也可以在创建任何操作之前调用tf.set_random_seed
。