我有一种计算成本高的方法来查找图像中特征的精确边界框。在所有后续图像上,该功能可能已移动。我想避免在每一帧上进行这种计算成本高昂的过程。是否有一种技术可以使用背景减法+轮廓检测等功能来跟踪某个特征在其边界框被识别一次之后?
答案 0 :(得分:1)
Object Tracking using OpenCV (C++/Python)
来自链接的python示例代码:
import cv2
import sys
if __name__ == '__main__' :
# Set up tracker.
# Instead of MIL, you can also use
# BOOSTING, KCF, TLD, MEDIANFLOW or GOTURN
tracker = cv2.Tracker_create("MIL")
# Read video
video = cv2.VideoCapture("videos/chaplin.mp4")
# Exit if video not opened.
if not video.isOpened():
print "Could not open video"
sys.exit()
# Read first frame.
ok, frame = video.read()
if not ok:
print 'Cannot read video file'
sys.exit()
# Define an initial bounding box
bbox = (287, 23, 86, 320) # x, y, width, height
# Uncomment the line below to select a different bounding box
# bbox = cv2.selectROI(frame, False)
# Initialize tracker with first frame and bounding box
ok = tracker.init(frame, bbox)
while True:
# Read a new frame
ok, frame = video.read()
if not ok:
break
# Update tracker
ok, bbox = tracker.update(frame)
# Draw bounding box
if ok:
p1 = (int(bbox[0]), int(bbox[1]))
p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]))
cv2.rectangle(frame, p1, p2, (0,0,255))
# Display result
cv2.imshow("Tracking", frame)
# Exit if ESC pressed
k = cv2.waitKey(1) & 0xff
if k == 27 : break
希望这有帮助!