我正在尝试使用ddply
dplyr
做一些事情
这是有效的:
library(plyr)
library(dplyr)
library(matrixStats)
mtcars2 = tbl_df(mtcars) %>%
mutate(car = rownames(mtcars))
# compute the weighted mean (I use cyl just to provide an example)
ddply(mtcars2, .(car), summarise, FUN = matrixStats::weightedMean(mpg, w = cyl, na.rm = TRUE))
# compute the weighted median
ddply(mtcars2, .(car), summarise, FUN = matrixStats::weightedMedian(mpg, w = cyl, na.rm = TRUE))
输出是
> ddply(mtcars2, .(car), summarise, FUN = matrixStats::weightedMean(mpg, w = cyl, na.rm = TRUE))
car FUN
1 AMC Javelin 15.2
2 Cadillac Fleetwood 10.4
3 Camaro Z28 13.3
4 Chrysler Imperial 14.7
5 Datsun 710 22.8
6 Dodge Challenger 15.5
7 Duster 360 14.3
8 Ferrari Dino 19.7
9 Fiat 128 32.4
10 Fiat X1-9 27.3
11 Ford Pantera L 15.8
12 Honda Civic 30.4
13 Hornet 4 Drive 21.4
14 Hornet Sportabout 18.7
15 Lincoln Continental 10.4
16 Lotus Europa 30.4
17 Maserati Bora 15.0
18 Mazda RX4 21.0
19 Mazda RX4 Wag 21.0
20 Merc 230 22.8
21 Merc 240D 24.4
22 Merc 280 19.2
23 Merc 280C 17.8
24 Merc 450SE 16.4
25 Merc 450SL 17.3
26 Merc 450SLC 15.2
27 Pontiac Firebird 19.2
28 Porsche 914-2 26.0
29 Toyota Corolla 33.9
30 Toyota Corona 21.5
31 Valiant 18.1
32 Volvo 142E 21.4
等......这没关系
我需要这样的事情(这不起作用因为不正确):
mtcars3 = tbl_df(mtcars) %>%
mutate(car = rownames(mtcars)) %>%
mutate(weighted_mean_mpg = ddply(mtcars, .(car), summarise, FUN = matrixStats::weightedMean(mpg, w = cyl, na.rm = TRUE))) %>%
mutate(weighted_median_mpg = ddply(mtcars, .(car), summarise, FUN = matrixStats::weightedMedian(mpg, w = cyl, na.rm = TRUE)))
或者换句话说,在dplyr语句中传递两个变量( x 和权重向量 w )
非常感谢提前!!
答案 0 :(得分:0)
x <- as_tibble(mtcars) %>% rownames_to_column(var = 'car')
x %>% group_by(car) %>% summarise(m = mean(mpg, wt = cyl)) %>% knitr::kable()