XNA / Monogame检测圆和矩形之间的碰撞不起作用

时间:2017-04-19 03:18:00

标签: c# xna collision-detection game-physics monogame

所以我有一个Circle结构,非常简单,看起来像这样:

public struct Circle
{
    public Circle(int x, int y, int radius) : this()
    {
        Center = new Point(x, y);
        Radius = radius;
    }

    public Point Center { get; private set; }
    public int Radius { get; private set; }

}

我有一个PhysicsEnity类看起来像这样:

public class PhysicsEntity
{

    public int Width { get; protected set; }
    public int Height { get; protected set; }
    public Vector2 Position { get;  set; }
    public Vector2 Velocity { get; set; }
    public float Restitution { get; protected set; }
    public float Mass { get; protected set; }

    public virtual void Update(GameTime gameTime)
    {
        float dt = (float)gameTime.ElapsedGameTime.TotalSeconds;
        Velocity += ((Phys.Gravity * dt) * Mass);
        Position += Velocity * dt;
    }

    public virtual void Draw(SpriteBatch spriteBatch) { }

    public virtual void ApplyImpulse(Vector2 impulse)
    {
        Position += impulse;
    }

}

我有两个继承自这个类的类。 CircleEntity获得一个圆圈,RectangleEntity获得一个矩形,但没有其他任何变化。

为了检查冲突,我有一个辅助函数,它接收两个PhysicsEntity个对象,检查它们的类型(RectangleEntityCircleEntity),然后调用该函数特定的碰撞类型。如果它们发生碰撞,碰撞检测功能只返回boolean

然后我有一个名为ResolveCollision的函数,它有两个实体,如下所示:

public static void ResolveCollision(PhysicsEntity a, PhysicsEntity b)
{
    if (a.Mass + b.Mass == 0)
    {
        a.Velocity = Vector2.Zero;
        b.Velocity = Vector2.Zero;
        return;
    }
    var invMassA = a.Mass > 0 ? 1 / a.Mass : 0;
    var invMassB = b.Mass > 0 ? 1 / b.Mass : 0;
    Vector2 rv = b.Velocity - a.Velocity;
    Vector2 normal = Vector2.Normalize(b.Position - a.Position);
    float velAlongNormal = Vector2.Dot(rv, normal);
    if (velAlongNormal > 0) return;
    float e = MathHelper.Min(a.Restitution, b.Restitution);
    float j = (-(1 + e) * velAlongNormal) / (invMassA + invMassB);
    Vector2 impulse = j * normal;
    a.Velocity -= invMassA * impulse;
    b.Velocity += invMassB * impulse;
}

Circle-Circle碰撞和Rectangle-Rectangle碰撞工作正常,但Circle-Rectangle绝对不行。我甚至无法正确检测到碰撞,它总是返回false。这是Rectangle-Circle碰撞检测:

public static bool RectangleCircleCollision(CircleEntity a, RectangleEntity b)
{
    Circle c = a.Circle;
    Rectangle r = b.Rectangle;
    Vector2 v = new Vector2(MathHelper.Clamp(c.Center.X, r.Left, r.Right),
                            MathHelper.Clamp(c.Center.Y, r.Top, r.Bottom));
    Vector2 direction = c.Center.ToVector2() - v;
    float distSquare = direction.LengthSquared();
    return ((distSquare > 0) && (distSquare < c.Radius * c.Radius));
}

此刻我完全失败了。我不知道出了什么问题。我已经研究了几乎所有在阳光下进行碰撞检测的教程,我只是不知道。

我在这里做错了什么?

编辑:我错了,Rectangle-Rectangle也无效。如果有人能指出我对二维碰撞检测白痴指南的方向,我会非常感激。

1 个答案:

答案 0 :(得分:3)

圆形和矩形重叠。

下图显示了我们可以找到圆形和矩形的所有情况。

enter image description here

深蓝色是要测试的矩形。由其中心及其宽度和高度定义

  • A 如果圆心不到矩形中心宽度和高度的一半(深蓝色),我们知道它正在触摸。
  • B 圆心的x或y位置小于矩形中心宽度或高度的一半,另一个距离小于宽度或高度的一半加圆半径。圆心位于矩形之外但仍然触及
  • C 圆圈靠近一个角落,其中心位于上方和左侧,但距角落的距离小于半径,因此它正在接触。
  • D 圆在矩形的顶部和右边缘的半径距离内,但距离角的半径距离更远。它没有动人。
  • E 未触及,因为圆心比任何边缘的半径都大。

我们可以通过考虑对称性来简化解决方案。如果我们将圆与中心的x和y距离设为正,那么我们只是做一个角落

private static bool DoRectangleCircleOverlap(Circle cir, Rectangle rect) {

    // Get the rectangle half width and height
    float rW = (rect.Width) / 2;
    float rH = (rect.Height) / 2;

    // Get the positive distance. This exploits the symmetry so that we now are
    // just solving for one corner of the rectangle (memory tell me it fabs for 
    // floats but I could be wrong and its abs)
    float distX = Math.Abs(cir.Center.X - (rect.Left + rW));
    float distY = Math.Abs(cir.Center.Y - (rect.Top + rH));

    if (distX >= cir.Radius + rW || distY >= cir.Radius + rH) {
        // Outside see diagram circle E
        return false;
    }
    if (distX < rW || distY < rH) {
        // Inside see diagram circles A and B
        return true; // touching
    }

    // Now only circles C and D left to test
    // get the distance to the corner
    distX -= rW;
    distY -= rH;

    // Find distance to corner and compare to circle radius 
    // (squared and the sqrt root is not needed
    if (distX * distX + distY * distY < cir.Radius * cir.Radius) {
        // Touching see diagram circle C
        return true;
    }
    return false;
}