我正在尝试使用tar.gz文件中包含的csv文件,并且在将正确的数据/对象传递给csv模块时遇到问题。
假设我有一个tar.gz文件,其中包含许多csv文件,如下所示。
1079,SAMPLE_A,GROUP,001,,2017/02/15 22:57:30
1041,SAMPLE_B,GROUP,023,,2017/02/15 22:57:26
1077,SAMPLE_C,GROUP,005,,2017/02/15 22:57:31
1079,SAMPLE_A,GROUP,128,,2017/02/15 22:57:38
我希望能够访问内存中的每个csv文件,而无需从tar文件中提取每个文件并将其写入磁盘。 例如:
import tarfile
import csv
tar = tarfile.open("tar-file.tar.gz")
for member in tar.getmembers():
f = tar.extractfile(member).read()
content = csv.reader(f)
for row in content:
print(row)
tar.close()
这会产生以下错误。
for row in content:
_csv.Error: iterator should return strings, not int (did you open the file in text mode?)
我也尝试将f解析为字符串,如csv模块文档中所述。
content = csv.reader([f])
以上产生同样的错误。
我尝试将文件对象f解析为ascii。
f = tar.extractfile(member).read().decode('ascii')
但是这会迭代每个csv元素,而不是迭代包含元素列表的行。
['1']
['0']
['7']
['9']
['', '']
['S']
['A']
['M']
['P']
['L']
['E']
['_']
['A']
['', '']
['G']
['R']
...剪断
['2']
['0']
['1']
['7']
['/']
['0']
['2']
['/']
['1']
['5']
[' ']
['2']
['2']
[':']
['5']
['7']
[':']
['3']
['8']
[]
[]
尝试将f解析为ascii并将其作为字符串
读取f = tar.extractfile(member).read().decode('ascii')
content = csv.reader([f])
产生以下输出
for row in content:
_csv.Error: new-line character seen in unquoted field - do you need to open the file in universal-newline mode?
为了演示不同的输出,我使用了以下代码。
import tarfile
import csv
tar = tarfile.open("tar-file.tar.gz")
for member in tar.getmembers():
f = tar.extractfile(member).read()
print(member.name)
print('Raw :', type(f))
print(f)
print()
f = f.decode('ascii')
print('ASCII:', type(f))
print(f)
tar.close()
这会产生以下输出。 (每个csv包含此示例的相同数据)。
./raw_data/csv-file1.csv
Raw : <class 'bytes'>
b'1079,SAMPLE_A,GROUP,001,,2017/02/15 22:57:30\n1041,SAMPLE_B,GROUP,023,,2017/02/15 22:57:26\n1077,SAMPLE_C,GROUP,005,,2017/02/15 22:57:31\n1079,SAMPLE_A,GROUP,128,,2017/02/15 22:57:38\n\n'
ASCII: <class 'str'>
1079,SAMPLE_A,GROUP,001,,2017/02/15 22:57:30
1041,SAMPLE_B,GROUP,023,,2017/02/15 22:57:26
1077,SAMPLE_C,GROUP,005,,2017/02/15 22:57:31
1079,SAMPLE_A,GROUP,128,,2017/02/15 22:57:38
./raw_data/csv-file2.csv
Raw : <class 'bytes'>
b'1079,SAMPLE_A,GROUP,001,,2017/02/15 22:57:30\n1041,SAMPLE_B,GROUP,023,,2017/02/15 22:57:26\n1077,SAMPLE_C,GROUP,005,,2017/02/15 22:57:31\n1079,SAMPLE_A,GROUP,128,,2017/02/15 22:57:38\n\n'
ASCII: <class 'str'>
1079,SAMPLE_A,GROUP,001,,2017/02/15 22:57:30
1041,SAMPLE_B,GROUP,023,,2017/02/15 22:57:26
1077,SAMPLE_C,GROUP,005,,2017/02/15 22:57:31
1079,SAMPLE_A,GROUP,128,,2017/02/15 22:57:38
./raw_data/csv-file3.csv
Raw : <class 'bytes'>
b'1079,SAMPLE_A,GROUP,001,,2017/02/15 22:57:30\n1041,SAMPLE_B,GROUP,023,,2017/02/15 22:57:26\n1077,SAMPLE_C,GROUP,005,,2017/02/15 22:57:31\n1079,SAMPLE_A,GROUP,128,,2017/02/15 22:57:38\n\n'
ASCII: <class 'str'>
1079,SAMPLE_A,GROUP,001,,2017/02/15 22:57:30
1041,SAMPLE_B,GROUP,023,,2017/02/15 22:57:26
1077,SAMPLE_C,GROUP,005,,2017/02/15 22:57:31
1079,SAMPLE_A,GROUP,128,,2017/02/15 22:57:38
如何让csv模块正确读取tar模块提供的内存中的文件? 感谢。
答案 0 :(得分:2)
您只需使用io.StringIO()
生成类似于csv库的对象文件即可使用。例如:
import tarfile
import csv
import io
with tarfile.open('input.rar') as tar:
for member in tar:
if member.isreg(): # Is it a regular file?
print("{} - {} bytes".format(member.name, member.size))
csv_file = io.StringIO(tar.extractfile(member).read().decode('ascii'))
for row in csv.reader(csv_file):
print(row)
答案 1 :(得分:0)
这个问题将近3年了。请注意,在简短讨论之后,可以在python: use CSV reader with single file extracted from tarfile中找到更好的解决方案:
import tarfile
import csv
import io
with tarfile.open('input.rar') as tar:
for member in tar:
if member.isreg(): # Is it a regular file?
print("{} - {} bytes".format(member.name, member.size))
csv_file = io.TextIOWrapper(tar.extractfile(member), encoding="utf-8")
for row in csv.reader(csv_file):
print(row)
TextIOWrapper对于较大的文件将具有更好的性能,因为它不需要立即使用一个完整的文件。相反,执行tar.extractfile(member).read()
时,会将完整的成员文件加载到内存中。