我想在熊猫中加入2 DF。有些列是int或float,其他列是类别。 (不对A和B df中的类别强制执行相同的cat代码/索引) 它们的常用列是大小为8的float和category列的列表。
加入
df_a.merge(df_b, how='inner'), on=join_columns )
根本不会返回任何结果。并通过
加入df_a.join(df_b, lsuffix='_l', rsuffix='_r')
似乎工作。
但我有点困惑,为什么一个失败,如果我不应该将所有列都强制转换为对象,以防止cat代码加入可能是错误的。
即。如果left
被选为merge
的加入方法,则加入的列只会包含NAN
个值。不幸的是,我不确定如何建立一个有用的最小例子。
这里是一个样本
import pandas as pd
raw_data = {
'subject_id': ['1', '2', '3', '4', '5'],
'name': ['A', 'B', 'C', 'D', 'E'],
'nationality': ['DE', 'AUT', 'US', 'US', 'US'],
'age_group' : [1, 2, 1, 3, 1]}
df_a = pd.DataFrame(raw_data, columns = ['subject_id', 'name', 'nationality', 'age_group'])
df_a.nationality = df_a.nationality.astype('category')
df_a
raw_data = {
'subject_id': ['1', '2', '3' ],
'name': ['Billy', 'Brian', 'Bran'],
'nationality': ['DE', 'US', 'US'],
'age_group' : [1, 1, 3],
'average_return_per_group' : [1.5, 2.3, 1.4]}
df_b = pd.DataFrame(raw_data, columns = ['subject_id', 'name', 'nationality', 'age_group', 'average_return_per_group'])
df_b.nationality = df_b.nationality.astype('category')
df_b
# some result is joined
df_a.join(df_b, lsuffix='_l', rsuffix='_r')
# this *fails* as only NULL values joined, or nor result for inner join
df_a.merge(df_b, how='left', on=['nationality', 'age_group'])
答案 0 :(得分:2)
join
沿着索引默认加入,并且merge
沿着具有相同名称的列加入。
检查一下:
In [115]: df_a.join(df_b, lsuffix='_l', rsuffix='_r')
Out[115]:
subject_id_l name_l nationality_l age_group_l subject_id_r name_r nationality_r age_group_r average_returns_per_group
0 1 A DE 1 1 Billy DE 1.0 NaN
1 2 B AUT 2 2 Brian US 1.0 NaN
2 3 C US 1 3 Bran US 3.0 NaN
3 4 D US 3 NaN NaN NaN NaN NaN
4 5 E US 1 NaN NaN NaN NaN NaN
让我们将['a','b','c']
设置为df_b
中的索引并尝试再次加入 - 您只会在所有NaN
列中看到*_r
:
In [116]: df_a.join(df_b.set_index(pd.Index(['a','b','c'])), lsuffix='_l', rsuffix='_r')
Out[116]:
subject_id_l name_l nationality_l age_group_l subject_id_r name_r nationality_r age_group_r average_returns_per_group
0 1 A DE 1 NaN NaN NaN NaN NaN
1 2 B AUT 2 NaN NaN NaN NaN NaN
2 3 C US 1 NaN NaN NaN NaN NaN
3 4 D US 3 NaN NaN NaN NaN NaN
4 5 E US 1 NaN NaN NaN NaN NaN
In [117]: df_b.set_index(pd.Index(['a','b','c']))
Out[117]:
subject_id name nationality age_group average_returns_per_group
a 1 Billy DE 1 NaN
b 2 Brian US 1 NaN
c 3 Bran US 3 NaN
更新:IMO merge按预期工作(在文档中描述)
In [151]: df_a.merge(df_b, on=['nationality', 'age_group'], how='left', suffixes=['_l','_r'])
Out[151]:
subject_id_l name_l nationality age_group subject_id_r name_r average_return_per_group
0 1 A DE 1 1 Billy 1.5
1 2 B AUT 2 NaN NaN NaN
2 3 C US 1 2 Brian 2.3
3 4 D US 3 3 Bran 1.4
4 5 E US 1 2 Brian 2.3
答案 1 :(得分:1)
我认为主要区别是join
有默认left join
和merge
inner join.