在R中联合命名num的列表

时间:2017-04-16 15:01:45

标签: r list dataframe

我遇到的问题是,经过一些计算后,我的结果会出现混乱的格式。我为一年中的每个季度计算了两个不同的值,并将每个值存储在列表中,如下面的输出所示:

$`2015`
   1        2        3        4 
158.4567 165.7833 153.1233 140.8067 

$`2016`
       1        2        3        4 
140.4833 149.9200 157.9233 161.2467

我之前的解决方案最终出现了类似append(value1,value2)的内容,它为我提供了以下不需要的输出:

$`2015`
   1        2        3        4        1        2        3        4 
158.4567 165.7833 153.1233 140.8067 151.5633 155.2667 132.4667 128.4633 

$`2016`
       1        2        3        4        1        2        3        4 
140.4833 149.9200 157.9233 161.2467 127.8667 144.3600 150.8467 152.5333

我找不到将这三个列表合并为一个列表或数据框的方法,如下所示:

date   value1     value2
2015.1 158.4567   151.5633
2015.2 165.7833   155.2667
2015.3 153.1233   132.4667
2015.4 140.8067   128.4633
2016.1 ...        ...
2016.2 ...        ...
2016.3 ...        ...
2016.4 ...        ...

修改 示例代码,用于创建我想在数据框中合并的两个值:

library(lubridate) # for date operations

# manual created dataframe
date <- sample(seq(as.Date('1999-01-01 00:00:00'), as.Date('2017-01-01 00:00:00'), by="day"), 500)
dataM = data.frame("first" = 1:500, "sec" = c(1:500), "date"=date)

dataM <- transform(dataM, date = ymd(dataM$date)) # date to lubridate date format

  splitByYear = split(dataM, year(dataM$date))
  splitByQuarter = sapply(splitByYear, function(y) split(y, quarter(y$date)))

  a = sapply(splitByQuarter, function(x) sapply(x, function(y) max(y$date, na.rm = TRUE)))
  b = sapply(splitByQuarter, function(x) sapply(x, function(y) min(y$sec, na.rm = TRUE)))


  res = mapply(quarterPP, a,b)
  res

  quarterPP <- function(a, b){
    value1 = a+b
    value2 = b+1900

    c(value1, value2) # this should be in a dataframe
}

2 个答案:

答案 0 :(得分:1)

使用matrix中的bind_rowsdplyr

来接近它的一种方法
#create dummy data
x <- setNames(rnorm(4), 1:4)
y <- setNames(rnorm(4), 1:4)
z <- setNames(rnorm(4), 1:4)
w <- setNames(rnorm(4), 1:4)
l1 <- list(`2015` = append(x, y), `2016` = append(z, w))

l1
#$`2015`
#         1          2          3          4          1          2          3           4 
#-0.0318981 -1.1241606 -0.1040653 -0.7819973 -0.8715601 -0.2287638 -0.9092943  -0.3757804 

#$`2016`
#         1          2          3          4          1          2          3           4 
#-0.6034540 -1.1469930  0.6085236  1.2565788 -0.1020582  0.1383716  1.1358109  -0.2635427 


l2 <- lapply(l1,function(i) { 
                  ind <- max(as.numeric(names(i))); 
                  data.frame(matrix(i, nrow = ind))
               })

final_df <- dplyr::bind_rows(l2, .id = 'Year')
final_df$Year <- make.unique(final_df$Year)

final_df
#    Year         V1         V2
#1   2015 -0.0318981 -0.8715601
#2 2015.1 -1.1241606 -0.2287638
#3 2015.2 -0.1040653 -0.9092943
#4 2015.3 -0.7819973 -0.3757804
#5   2016 -0.6034540 -0.1020582
#6 2016.1 -1.1469930  0.1383716
#7 2016.2  0.6085236  1.1358109
#8 2016.3  1.2565788 -0.2635427

来自spread的{​​{1}}的另一种可能性,

tidyr

答案 1 :(得分:0)

如果将所有列表合并为一个,则可以使用purrr::map_df来迭代并将结果强制转换为data.frame:

library(tidyverse)
set.seed(47)

l1 <- set_names(replicate(3, set_names(rnorm(4), 1:4), simplify = FALSE), 2015:2017)
l2 <- set_names(replicate(3, set_names(rnorm(4), 1:4), simplify = FALSE), 2015:2017)

lst(l1, l2) %>%    # make a list, pulling names from objects
    map_df(~map_df(.x,    # for each sublist, iterate over it
                   ~data_frame(val = .x,    # making a data.frame of each subelement
                               quarter = as.integer(names(.x))), 
                   .id = 'year'),    # coercing the element to a data.frame with a column of names
           .id = 'var') %>%    # and coerce both elements to a data.frame with a column of names
    spread(var, val)    # finally, reshape to wide form

#> # A tibble: 12 × 4
#>     year quarter          l1          l2
#> *  <chr>   <int>       <dbl>       <dbl>
#> 1   2015       1  1.99469634  0.49382018
#> 2   2015       2  0.71114251 -1.82822917
#> 3   2015       3  0.18540528  0.09147291
#> 4   2015       4 -0.28176501  0.67077922
#> 5   2016       1  0.10877555 -0.08107805
#> 6   2016       2 -1.08573747  1.26424109
#> 7   2016       3 -0.98548216 -0.70338819
#> 8   2016       4  0.01513086 -0.04057817
#> 9   2017       1 -0.25204590 -1.56616208
#> 10  2017       2 -1.46575030  0.24914817
#> 11  2017       3 -0.92245624 -0.34041599
#> 12  2017       4  0.03960243  0.41719084