我需要在我的巨大data.table
中将多个列与分隔符联合起来。所以我使用unite
包中的tidyr
来获取它。
您知道是否有data.table
优化版本吗?
library(data.table)
data <- data.table(id=1:10, col1=11:20, col2=21:30, col3=31:40)
print(data)
library(tidyr)
data <- unite(data, "col_test", col1, col2, col3)
print(data)
答案 0 :(得分:6)
我们可以将do.call
与paste
data[, .(id, col_test=do.call(paste, c(.SD, sep="_"))), .SDcols= col1:col3]
# id col_test
# 1: 1 11_21_31
# 2: 2 12_22_32
# 3: 3 13_23_33
# 4: 4 14_24_34
# 5: 5 15_25_35
# 6: 6 16_26_36
# 7: 7 17_27_37
# 8: 8 18_28_38
# 9: 9 19_29_39
#10: 10 20_30_40
基准
microbenchmark(
tidyr_unite = {
unite(data1, "col_test", col1, col2, col3)
},
dt_docallPaste = {
data1[, .(id = data1[["id"]], col_test = do.call(paste, c(.SD, sep="_"))),
.SDcols= col1:col3]
},
apply_Paste = {
cbind.data.frame(id = data1$id,
col_test = apply(data1[, -1, with = FALSE], 1,
paste, collapse = "_"))
},
times = 10
)
# Unit: seconds
# expr min lq mean median uq max neval cld
# tidyr_unite 7.501491 7.521328 7.720600 7.647506 7.756273 8.219710 10 a
# dt_docallPaste 7.530711 7.558436 7.910604 7.618165 8.429796 8.497932 10 a
# apply_Paste 44.743782 45.797092 46.791288 46.325188 47.330887 51.155663 10 b
与基础apply
相比,看起来tidyr
和data.table
版本效率相同。这是预期的,因为unite
只是do.call("paste", ...)
正如您从source code:
中看到的那样unite_.data.frame <- function(data, col, from, sep = "_", remove = TRUE) {
united <- do.call("paste", c(data[from], list(sep = sep)))
first_col <- which(names(data) %in% from)[1]
data2 <- data
if (remove) {
data2 <- data2[setdiff(names(data2), from)]
}
append_col(data2, united, col, after = first_col - 1)
}