我尝试创建一个简单的摘要功能,以加快报告多列数据,以便在R Markdown文件中使用。
var1是数据的分类列,t_var是表示数据四分之一的整数,dt是完整数据。
summarise_data_categorical <- function(var1, t_var, dt){
print(var1)
print(t_var)
#Select the columns to aggregate
group_func <- dt %>%
select(one_of(t_var, var1)) %>%
group_by(t_var,var1)
#create simple count summary
count_table <- group_func %>%
summarise(count = n()) %>%
spread(t_var, count)
#create a frequency version of the same table...
freq <- dt %>%
select(t_var, var1) %>%
group_by(t_var,var1) %>%
summarise(count = n()) %>%
mutate(freq = round(count / sum(count),3)*100) %>%
select(-count)
#Present that table
freq_table <- freq %>%
spread(t_var, freq)
#Create the chart to do the same thing..
freq_chart <- freq %>%
ggplot()+
geom_line(mapping=aes(x=t_var, y = freq, colour=var1))
#Compile outputs as a list
results <- list(count_table, freq_table, freq_chart)
#Return list
results
}
说我有一个框架:
fr <- data.frame(lets = sample(LETTERS, 100, replace=TRUE),
`quarter type` = sample(1:4, 100, replace=TRUE))
如果我运行该功能,那么:
summarise_data_categorical("lets", "quarter type", fr)
初始产出很有希望:
[1] "lets"
[1] "quarter type"
(注意:在尝试重新创建数据时,出于某种原因我也会收到警告:
未知变量:quarter type
,
虽然这不会出现在我的原始数据中)
主要是我收到错误:
Error in resolve_vars(new_groups, tbl_vars(.data)) : unknown variable to group by : t_var
来自Python,我仍然对如何引用列感到困惑。有人可以解释我如何解决我的错误吗?
答案 0 :(得分:6)
我们可以使用de dplyr
版本的新版本(很快将在0.6.0发布)
summarise_data_categorical <- function(var1, t_var, dt){
var1 <- enquo(var1)
t_var <- enquo(t_var)
v1 <- quo_name(var1)
v2 <- quo_name(t_var)
dt %>%
select(one_of(v1, v2)) %>%
group_by(!!t_var, !!var1) %>%
summarise(count = n())
}
summarise_data_categorical(lets, quartertype, fr)
#Source: local data frame [65 x 3]
#Groups: quartertype [?]
# quartertype lets count
# <int> <fctr> <int>
#1 1 A 1
#2 1 F 2
#3 1 G 2
#4 1 H 1
#5 1 I 1
#6 1 J 4
#7 1 M 3
#8 1 N 1
#9 1 P 1
#10 1 S 5
# ... with 55 more rows
enquo
通过获取输入参数并将其转换为substitute
,从base R
执行与quosures
类似的功能。 one_of
采用字符串参数,因此可以使用quo_name
将quosures转换为字符串。在group_by/summarise/mutate
等内部,我们可以通过取消引用(UQ
或!!
)
尽管我们在使用quosures
函数实现相同功能时,dplyr
似乎与tidyr
一起工作正常。以下代码适用于完整代码
summarise_data_categorical <- function(var1, t_var, dt){
var1 <- enquo(var1)
t_var <- enquo(t_var)
v1 <- quo_name(var1)
v2 <- quo_name(t_var)
Summ_func <- dt %>%
select(one_of(v1, v2)) %>%
group_by(!!t_var, !!var1) %>%
summarise(count = n())
count_table <- Summ_func %>%
spread_(v2, "count")
freq <- Summ_func %>%
mutate(freq = round(count / sum(count),3)*100) %>%
select(-count)
freq_table <- freq %>%
spread_(v2, "freq")
freq_chart <- freq %>%
ggplot()+
geom_line(mapping=aes_string(x= v2 , y = "freq", colour= v1))
results <- list(count_table, freq_table, freq_chart)
results
}
summarise_data_categorical(lets, quartertype, fr)
#[[1]]
# A tibble: 24 × 5
# lets `1` `2` `3` `4`
#* <fctr> <int> <int> <int> <int>
#1 A NA NA 1 2
#2 B 2 NA NA 1
#3 C 1 5 1 2
#4 E 1 1 NA NA
#5 G NA 1 2 2
#6 H 1 NA 1 1
#7 I NA 1 1 2
#8 J 2 1 1 1
#9 K 1 1 2 1
#10 L NA 2 NA NA
# ... with 14 more rows
#[[2]]
# A tibble: 24 × 5
# lets `1` `2` `3` `4`
#* <fctr> <dbl> <dbl> <dbl> <dbl>
#1 A NA NA 3.1 9.5
#2 B 8.7 NA NA 4.8
#3 C 4.3 20.8 3.1 9.5
#4 E 4.3 4.2 NA NA
#5 G NA 4.2 6.2 9.5
#6 H 4.3 NA 3.1 4.8
#7 I NA 4.2 3.1 9.5
#8 J 8.7 4.2 3.1 4.8
#9 K 4.3 4.2 6.2 4.8
#10 L NA 8.3 NA NA
## ... with 14 more rows
#[[3]]