原谅我的第一篇文章,实际上就是这样。我已经敲了三天试图让正方形在球体上正确对齐。有没有人知道平面切线的参数方程?请参阅以下代码中的切线X,Y和Z ...
Here is the output for reference. My stupid face is there, as a bonus, for you all to hate on
代码是多个页面上更大的库的一部分。这是一个分散注意力的问题。我已经搜索了数学网站和StackOverflow的答案。我将位置和旋转数据烘焙到Float32数组中,然后再将其发送到渲染器。因此,lookAt和其他三种和WebGL功能都不起作用。我需要纯数学解决方案。
this.sphere = function()
{
var args = arguments[ 0 ];
var offsets = offset( args.parameters.offsets );
var arrays =
{
unique: [],
position: [],
rotation: []
};
var phi, theta;
var x, y, z;
var tangentX, tangentY, tangentZ;
var pos = [];
var d360 = Math.PI * 2;
var d180 = Math.PI;
var d90 = Math.PI / 2;
var cap = false;
for ( var p = 0; p <= args.parameters.stacks; p++ )
{
// stacks
phi = d180 * p / args.parameters.stacks;
for ( var t = 0; t < args.parameters.slices; t++ )
{
var predicate = true;
// slices
theta = d360 * t / args.parameters.slices;
x = precision( Math.cos( theta ) * Math.sin( phi ), 3 ) * args.parameters.scale.x + offsets.position.x;
y = precision( Math.cos( phi ), 3 ) * args.parameters.scale.y + offsets.position.y;
z = precision( Math.sin( theta ) * Math.sin( phi ), 3 ) * args.parameters.scale.z + offsets.position.z;
pos = [ x, y, z ];
// caps - both sin and cos are 0
cap = !( precision( Math.sin( phi ), 0 ) || precision( Math.cos( theta ), 0 ) );
/* This is my problem area ************************************/
tangentX = - Math.sign( Math.sin( theta ) ) * Math.tan( y );
tangentY = d90 - theta;
tangentZ = 0;
//if ( predicate ) console.log( p, t, degrees( theta ), degrees( tangentY ), Math.sign( Math.sin( phi ) ) );
// add only once
if ( !hash( arrays.unique, pos ) && predicate )
{
arrays.unique.push( pos );
arrays.position.push( x, y, z );
arrays.rotation.push( tangentX, tangentY, tangentZ );
}
}
}
return { position: new Float32Array( arrays.position ), rotation: new Float32Array( arrays.rotation ) };
};
答案 0 :(得分:1)
将多维数据集放在球体上的最简单方法是使用一个好的lookAt
函数,一个返回世界矩阵而不是逆世界矩阵的函数(尽管如果你有一个返回逆世界矩阵的函数,你可以反转它得到一个世界矩阵)
只需在球体上选择一个点然后调用
const positionOnSphere = (pick a point on the sphere)
const target = [0, 0, 0]; // look at the center of the sphere
const up = [0, 1, 0]; // will work as long as you're not putting
// sphere at the exact poles
const worldMatrix = yourMathLibsLookAtFunction(positionOnSphere, target, up);
或者
const invMatrix = yourMathLibsInverseLookAtFunction(positionOnSphere, target, up);
const worldMatrix = yourMathLibsInverseFunction(invMatrix);
"use strict";
twgl.setDefaults({attribPrefix: "a_"});
const m4 = twgl.m4;
const v3 = twgl.v3;
const gl = twgl.getWebGLContext(document.getElementById("c"));
const programInfo = twgl.createProgramInfo(gl, ["vs", "fs"]);
const bufferInfo = twgl.primitives.createCubeBufferInfo(gl, 2);
// adapted from http://stackoverflow.com/a/26127012/128511
function fibonacciSphere(samples, i) {
const rnd = 1.;
const offset = 2. / samples;
const increment = Math.PI * (3. - Math.sqrt(5.));
// for i in range(samples):
const y = ((i * offset) - 1.) + (offset / 2.);
const r = Math.sqrt(1. - Math.pow(y ,2.));
const phi = ((i + rnd) % samples) * increment;
const x = Math.cos(phi) * r;
const z = Math.sin(phi) * r;
return [x, y, z];
}
// Shared values
const lightWorldPosition = [1, 8, -10];
const lightColor = [1, 1, 1, 1];
const camera = m4.identity();
const view = m4.identity();
const viewProjection = m4.identity();
const objects = [];
const drawObjects = [];
const numObjects = 100;
for (var ii = 0; ii < numObjects; ++ii) {
const position = v3.mulScalar(fibonacciSphere(numObjects, ii + 1), 10);
const target = [0, 0, 0];
const up = [0, 1, 0];
const world = m4.lookAt(position, target, up);
m4.scale(world, [1, 1, 0.1], world);
const uniforms = {
u_lightWorldPos: lightWorldPosition,
u_lightColor: lightColor,
u_diffuseColor: [1, ii / numObjects, 0, 1],
u_specular: [1, 1, 1, 1],
u_shininess: 50,
u_specularFactor: 1,
u_viewInverse: camera,
u_world: world,
u_worldInverseTranspose: m4.identity(),
u_worldViewProjection: m4.identity(),
};
drawObjects.push({
programInfo: programInfo,
bufferInfo: bufferInfo,
uniforms: uniforms,
});
objects.push({
uniforms: uniforms,
});
}
function render(time) {
time *= 0.001;
twgl.resizeCanvasToDisplaySize(gl.canvas);
gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);
gl.enable(gl.DEPTH_TEST);
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
const projection = m4.perspective(30 * Math.PI / 180, gl.canvas.clientWidth / gl.canvas.clientHeight, 0.5, 100);
const radius = 25;
const eye = [Math.cos(time) * radius, Math.sin(time * 0.3) * radius, Math.sin(time) * radius];
const target = [0, 0, 0];
const up = [0, 1, 0];
m4.lookAt(eye, target, up, camera);
m4.inverse(camera, view);
m4.multiply(projection, view, viewProjection);
objects.forEach(function(obj) {
const uni = obj.uniforms;
const world = uni.u_world;
m4.transpose(m4.inverse(world, uni.u_worldInverseTranspose), uni.u_worldInverseTranspose);
m4.multiply(viewProjection, uni.u_world, uni.u_worldViewProjection);
});
twgl.drawObjectList(gl, drawObjects);
requestAnimationFrame(render);
}
requestAnimationFrame(render);
&#13;
body {
margin: 0;
}
canvas {
display: block;
width: 100vw;
height: 100vh;
}
&#13;
<canvas id="c"></canvas>
<script id="vs" type="notjs">
uniform mat4 u_worldViewProjection;
uniform vec3 u_lightWorldPos;
uniform mat4 u_world;
uniform mat4 u_viewInverse;
uniform mat4 u_worldInverseTranspose;
attribute vec4 a_position;
attribute vec3 a_normal;
attribute vec2 a_texcoord;
varying vec4 v_position;
varying vec2 v_texCoord;
varying vec3 v_normal;
varying vec3 v_surfaceToLight;
varying vec3 v_surfaceToView;
void main() {
v_texCoord = a_texcoord;
v_position = (u_worldViewProjection * a_position);
v_normal = (u_worldInverseTranspose * vec4(a_normal, 0)).xyz;
v_surfaceToLight = u_lightWorldPos - (u_world * a_position).xyz;
v_surfaceToView = (u_viewInverse[3] - (u_world * a_position)).xyz;
gl_Position = v_position;
}
</script>
<script id="fs" type="notjs">
precision mediump float;
varying vec4 v_position;
varying vec2 v_texCoord;
varying vec3 v_normal;
varying vec3 v_surfaceToLight;
varying vec3 v_surfaceToView;
uniform vec4 u_lightColor;
uniform vec4 u_diffuseColor;
uniform vec4 u_specular;
uniform float u_shininess;
uniform float u_specularFactor;
vec4 lit(float l ,float h, float m) {
return vec4(1.0,
abs(l),//max(l, 0.0),
(l > 0.0) ? pow(max(0.0, h), m) : 0.0,
1.0);
}
void main() {
vec3 a_normal = normalize(v_normal);
vec3 surfaceToLight = normalize(v_surfaceToLight);
vec3 surfaceToView = normalize(v_surfaceToView);
vec3 halfVector = normalize(surfaceToLight + surfaceToView);
vec4 litR = lit(dot(a_normal, surfaceToLight),
dot(a_normal, halfVector), u_shininess);
vec4 outColor = vec4((
u_lightColor * (u_diffuseColor * litR.y +
u_specular * litR.z * u_specularFactor)).rgb,
u_diffuseColor.a);
gl_FragColor = outColor;
}
</script>
<script src="https://twgljs.org/dist/3.x/twgl-full.min.js"></script>
&#13;