将scipy稀疏矩阵存储为HDF5

时间:2017-04-13 10:38:50

标签: python scipy sparse-matrix hdf5 h5py

我想以HDF5格式压缩和存储一个巨大的Scipy矩阵。我该怎么做呢?我尝试过以下代码:

a = csr_matrix((dat, (row, col)), shape=(947969, 36039))
f = h5py.File('foo.h5','w')    
dset = f.create_dataset("init", data=a, dtype = int, compression='gzip')

我收到这样的错误,

TypeError: Scalar datasets don't support chunk/filter options
IOError: Can't prepare for writing data (No appropriate function for conversion path)

我无法将其转换为numpy数组,因为会有内存溢出。什么是最好的方法?

2 个答案:

答案 0 :(得分:9)

csr矩阵将其值存储在3个数组中。它不是数组或数组的子类,因此h5py无法直接保存它。您可以做的最好的事情是保存属性,并在加载时重新创建矩阵:

In [248]: M = sparse.random(5,10,.1, 'csr')
In [249]: M
Out[249]: 
<5x10 sparse matrix of type '<class 'numpy.float64'>'
    with 5 stored elements in Compressed Sparse Row format>
In [250]: M.data
Out[250]: array([ 0.91615298,  0.49907752,  0.09197862,  0.90442401,  0.93772772])
In [251]: M.indptr
Out[251]: array([0, 0, 1, 2, 3, 5], dtype=int32)
In [252]: M.indices
Out[252]: array([5, 7, 5, 2, 6], dtype=int32)
In [253]: M.data
Out[253]: array([ 0.91615298,  0.49907752,  0.09197862,  0.90442401,  0.93772772])

coo格式包含datarowcol属性,与用于创建(dat, (row, col))的{​​{1}}基本相同。

a

新的In [254]: M.tocoo().row Out[254]: array([1, 2, 3, 4, 4], dtype=int32) 函数执行:

save_npz

换句话说,它收集字典中的相关属性,并使用arrays_dict = dict(format=matrix.format, shape=matrix.shape, data=matrix.data) if matrix.format in ('csc', 'csr', 'bsr'): arrays_dict.update(indices=matrix.indices, indptr=matrix.indptr) ... elif matrix.format == 'coo': arrays_dict.update(row=matrix.row, col=matrix.col) ... np.savez(file, **arrays_dict) 创建zip存档。

同一种方法可以与savez文件一起使用。有关h5py的最新问题,请参阅源代码链接。

save_npz method missing from scipy.sparse

看看你能不能正常工作。如果您可以创建save_npz矩阵,则可以从其属性(或csr等效项)重新创建它。如果需要,我可以做一个有效的例子。

csr到h5py示例

coo
制造

import numpy as np
import h5py
from scipy import sparse

M = sparse.random(10,10,.2, 'csr')
print(repr(M))

print(M.data)
print(M.indices)
print(M.indptr)

f = h5py.File('sparse.h5','w')
g = f.create_group('Mcsr')
g.create_dataset('data',data=M.data)
g.create_dataset('indptr',data=M.indptr)
g.create_dataset('indices',data=M.indices)
g.attrs['shape'] = M.shape
f.close()

f = h5py.File('sparse.h5','r')
print(list(f.keys()))
print(list(f['Mcsr'].keys()))

g2 = f['Mcsr']
print(g2.attrs['shape'])

M1 = sparse.csr_matrix((g2['data'][:],g2['indices'][:],
    g2['indptr'][:]), g2.attrs['shape'])
print(repr(M1))
print(np.allclose(M1.A, M.A))
f.close()

替代

1314:~/mypy$ python3 stack43390038.py 
<10x10 sparse matrix of type '<class 'numpy.float64'>'
    with 20 stored elements in Compressed Sparse Row format>
[ 0.13640389  0.92698959 ....  0.7762265 ]
[4 5 0 3 0 2 0 2 5 6 7 1 7 9 1 3 4 6 8 9]
[ 0  2  4  6  9 11 11 11 14 19 20]
['Mcsr']
['data', 'indices', 'indptr']
[10 10]
<10x10 sparse matrix of type '<class 'numpy.float64'>'
    with 20 stored elements in Compressed Sparse Row format>
True

答案 1 :(得分:3)

您可以使用scipy.sparse.save_npz方法

或者考虑使用Pandas.SparseDataFrame,但要注意此方法非常慢(感谢@hpaulj for testing and pointing it out

演示:

生成稀疏矩阵和SparseDataFrame

In [55]: import pandas as pd

In [56]: from scipy.sparse import *

In [57]: m = csr_matrix((20, 10), dtype=np.int8)

In [58]: m
Out[58]:
<20x10 sparse matrix of type '<class 'numpy.int8'>'
        with 0 stored elements in Compressed Sparse Row format>

In [59]: sdf = pd.SparseDataFrame([pd.SparseSeries(m[i].toarray().ravel(), fill_value=0)
    ...:                           for i in np.arange(m.shape[0])])
    ...:

In [61]: type(sdf)
Out[61]: pandas.sparse.frame.SparseDataFrame

In [62]: sdf.info()
<class 'pandas.sparse.frame.SparseDataFrame'>
RangeIndex: 20 entries, 0 to 19
Data columns (total 10 columns):
0    20 non-null int8
1    20 non-null int8
2    20 non-null int8
3    20 non-null int8
4    20 non-null int8
5    20 non-null int8
6    20 non-null int8
7    20 non-null int8
8    20 non-null int8
9    20 non-null int8
dtypes: int8(10)
memory usage: 280.0 bytes

将SparseDataFrame保存到HDF文件

In [64]: sdf.to_hdf('d:/temp/sparse_df.h5', 'sparse_df')

从HDF文件中读取

In [65]: store = pd.HDFStore('d:/temp/sparse_df.h5')

In [66]: store
Out[66]:
<class 'pandas.io.pytables.HDFStore'>
File path: d:/temp/sparse_df.h5
/sparse_df            sparse_frame

In [67]: x = store['sparse_df']

In [68]: type(x)
Out[68]: pandas.sparse.frame.SparseDataFrame

In [69]: x.info()
<class 'pandas.sparse.frame.SparseDataFrame'>
Int64Index: 20 entries, 0 to 19
Data columns (total 10 columns):
0    20 non-null int8
1    20 non-null int8
2    20 non-null int8
3    20 non-null int8
4    20 non-null int8
5    20 non-null int8
6    20 non-null int8
7    20 non-null int8
8    20 non-null int8
9    20 non-null int8
dtypes: int8(10)
memory usage: 360.0 bytes