我从3个不同的数据框导入数据(所有数据框都使用相同的密钥)并将它们组合到一个数据帧中。
df1 = read_xlsx('Means_Cent')
df2 = read_xlsx('Means_Rand')
df3 = read_xlsx('Means_Const')
df1['Key'] = 'Cent'
df2['Key'] = 'Rand'
df3['Key'] = 'Const'
df_means = pd.concat([df1,df2,df3], keys = ['Cent', 'Rand', 'Const'])
现在我想使用DataFrame.plot()创建一个图表,其中每个键都有1个图表= [' Cent',' Rand'' Const&# 39;]在同一图中。
我的部分数据框df_means看起来像这样:
02_VOI 03_Solidity 04_Total_Cells
Cent 0 1.430 19.470 132.0
1 1.415 18.880 131.0
2 1.460 19.695 135.0
3 1.520 19.695 141.0
Rand 0 1.430 19.205 132.0
1 1.430 19.170 132.0
2 1.445 19.430 133.5
3 1.560 19.820 144.5
Const 0 1.175 22.695 108.5
1 1.430 22.260 132.0
2 1.180 21.090 109.0
3 1.360 22.145 126.0
现在我想绘制02_VOI对04_Total_Cells,每个键应该是1个图形(g1 = 02_VOI(Cent)vs 04_Total_Cells(Cent),g2 = 02_VOI(Rand)vs 04_Total_Cells(Rand)...)< / p>
我使用DataFrame.unstack()尝试了它:
df_means.unstack(level = 0).plot(x = '02_VOI', y = '04_Total_Cells')
但这似乎弄乱了钥匙。它返回9个图形(每个VOI(Cent,Rand,Const)与Total_Cells(Cent,Rand,Const)的组合为1。
感谢您的帮助,我也非常乐意提供有关如何更好地连接3个初始数据帧的提示。
答案 0 :(得分:2)
我想我会使用Seaborn图。这更容易。 Seaborn喜欢"tidy"数据。
import pandas as pd
import seaborn as sns
df_mean = pd.read_clipboard()
df_mean
输出:
02_VOI 03_Solidity 04_Total_Cells
Cent 0 1.430 19.470 132.0
1 1.415 18.880 131.0
2 1.460 19.695 135.0
3 1.520 19.695 141.0
Rand 0 1.430 19.205 132.0
1 1.430 19.170 132.0
2 1.445 19.430 133.5
3 1.560 19.820 144.5
Const 0 1.175 22.695 108.5
1 1.430 22.260 132.0
2 1.180 21.090 109.0
3 1.360 22.145 126.0
根据需要重置索引并重命名列。
df_mean = df_mean.reset_index()
df_mean = df_mean.rename(columns={'level_0':'Groups','level_1':'Samples'})
_ = sns.lmplot(x='02_VOI',y='04_Total_Cells', data=df_mean, scatter=True, col='Groups',fit_reg=False)