将自定义类别分配给json数据 - pandas

时间:2017-04-10 19:25:41

标签: python pandas machine-learning scikit-learn sklearn-pandas

为原始数据分配标签,而不是从get_dummies获取新的指标列。我想要这样的东西:

json_input:

[{id:100,vehicle_type:" Car",time:" 2017-04-06 01:39:43",zone =" A" ,键入:"选中"}, {id:101,vehicle_type:" Truck",time:" 2017-04-06 02:35:45",zone =" B",输入:& #34;未选中"}, {id:102,vehicle_type:" Truck",time:" 2017-04-05 03:20:12",zone =" A",输入:& #34;经过"}, {id:103,vehicle_type:" Car",time:" 2017-04-04 10:05:04",zone =" C",输入:& #34;未选中"} ]

结果:

  • id,vehicle_type,time_range,zone,type
  • 100,0,1,1,1
  • 101,1,1,2,0
  • 102,1,2,1,1
  • 103,0,3,3,0

时间戳 - TS 列 - > vehicle_type,type是binary,time_range(1 - >(TS1-TS2),2 - >(TS3-TS4),3->(TS5-TS6)),zone->分类(1,2或3)。 当我将扁平化的json提供给pandas中的数据帧时,我想自动分配这些标签。这可能吗? (我不希望来自pandas中get_dummies的zone_1,type_1,vehicle_type_3指标列)。如果pandas不可能,请为此自动化建议python lib。

1 个答案:

答案 0 :(得分:1)

这是我能想到的。我不知道你在寻找什么时间范围

import datetime
import io
import pandas as pd
import numpy as np
df_string='[{"id":100,"vehicle_type":"Car","time":"2017-04-06 01:39:43","zone":"A","type":"Checked"},{"id":101,"vehicle_type":"Truck","time":"2017-04-06 02:35:45","zone":"B","type":"Unchecked"},{"id":102,"vehicle_type":"Truck","time":"2017-04-05 03:20:12","zone":"A","type":"Checked"},{"id":103,"vehicle_type":"Car","time":"2017-04-04 10:05:04","zone":"C","type":"Unchecked"}]'
df = pd.read_json(io.StringIO(df_string))
df['zone'] = pd.Categorical(df.zone)
df['vehicle_type'] = pd.Categorical(df.vehicle_type)
df['type'] = pd.Categorical(df.type)
df['zone_int'] = df.zone.cat.codes
df['vehicle_type_int'] = df.vehicle_type.cat.codes
df['type_int'] = df.type.cat.codes
df.head()

编辑 这是我能想到的

import datetime
import io
import math
import pandas as pd
#Taken from http://stackoverflow.com/questions/13071384/python-ceil-a-datetime-to-next-quarter-of-an-hour
def ceil_dt(dt, num_seconds=900):
    nsecs = dt.minute*60 + dt.second + dt.microsecond*1e-6  
    delta = math.ceil(nsecs / num_seconds) * num_seconds - nsecs
    return dt + datetime.timedelta(seconds=delta)

df_string='[{"id":100,"vehicle_type":"Car","time":"2017-04-06 01:39:43","zone":"A","type":"Checked"},{"id":101,"vehicle_type":"Truck","time":"2017-04-06 02:35:45","zone":"B","type":"Unchecked"},{"id":102,"vehicle_type":"Truck","time":"2017-04-05 03:20:12","zone":"A","type":"Checked"},{"id":103,"vehicle_type":"Car","time":"2017-04-04 10:05:04","zone":"C","type":"Unchecked"}]'
df = pd.read_json(io.StringIO(df_string))
df['zone'] = pd.Categorical(df.zone)
df['vehicle_type'] = pd.Categorical(df.vehicle_type)
df['type'] = pd.Categorical(df.type)
df['zone_int'] = df.zone.cat.codes
df['vehicle_type_int'] = df.vehicle_type.cat.codes
df['type_int'] = df.type.cat.codes
df['time'] = pd.to_datetime(df.time)
df['dayofweek'] = df.time.dt.dayofweek
df['month_int'] = df.time.dt.month
df['year_int'] = df.time.dt.year
df['day'] = df.time.dt.day
df['date'] = df.time.apply(lambda x: x.date())
df['month'] = df.date.apply(lambda x: datetime.date(x.year, x.month, 1))
df['year'] = df.date.apply(lambda x: datetime.date(x.year, 1, 1))
df['hour'] = df.time.dt.hour
df['mins']  = df.time.dt.minute
df['seconds'] = df.time.dt.second
df['time_interval_3hour'] = df.hour.apply(lambda x : math.floor(x/3)+1)
df['time_interval_6hour'] = df.hour.apply(lambda x : math.floor(x/6)+1)
df['time_interval_12hour'] = df.hour.apply(lambda x : math.floor(x/12)+1)
df['weekend']  = df.dayofweek.apply(lambda x:  x>4)

df['ceil_quarter_an_hour'] =df.time.apply(lambda x : ceil_dt(x))
df['ceil_half_an_hour'] =df.time.apply(lambda x : ceil_dt(x, num_seconds=1800))
df.head()