使用python bokeh.pallettes的多线图

时间:2017-04-10 15:08:22

标签: python-2.7 pandas bokeh

我正在尝试在下面的代码中绘制列表“w”的长度的折线图。当我使用来自散景的spectr11时,我得到的只是图表上的11行,其中列表包含24个参数。是否有任何其他调色板允许我绘制列表“w”

中的所有行
#Import the library
import pandas 
import bokeh
import MySQLdb
from bokeh.plotting import figure, output_file, show
from bokeh.palettes import Spectral11


w=['F1','F2','F3','F4','F5','F6','F7','F8','F9','F10','F11','F12','G1','G2','G3','G4','G5','G6','G7','G8','G9','G10','G11','G12']

p = figure(plot_width=800, plot_height=500, x_axis_type="datetime")
p.title.text = 'Click on legend entries to hide the corresponding lines'
# Open database connection
db = MySQLdb.connect("localhost","user","password","db" )

在下面的for循环中,只形成了11个数据帧,最终绘制了这11行。

for name, color in zip(w, Spectral11):
   stmnt='select date_time,col1,w,test_value from db where w="%s"'%(name)
   df=pandas.read_sql(stmnt,con=db)

p.line(df['date_time'], df['test_value'], line_width=2, color=color, alpha=0.8, legend=name)

p.legend.location = "top_left"
p.legend.click_policy="hide"

output_file("interactive_legend.html", title="interactive_legend.py example")

show(p)
下面的

是代码的结果图 the resultant image of the above code

2 个答案:

答案 0 :(得分:3)

问题是zip在较短列表的末尾被截断。

In [1]: from bokeh.palettes import Spectral11

In [2]: w=['F1','F2','F3','F4','F5','F6','F7','F8','F9','F10','F11','F12','G1','G2','G3','G4','G5','G6','G7','G8'
    ...: ,'G9','G10','G11','G12']

In [3]: for name, color in zip(w, Spectral11):
    ...:     print(name, color)
    ...:
F1 #5e4fa2
F2 #3288bd
F3 #66c2a5
F4 #abdda4
F5 #e6f598
F6 #ffffbf
F7 #fee08b
F8 #fdae61
F9 #f46d43
F10 #d53e4f
F11 #9e0142

选择比w列表更长的调色板可以解决此问题(如@PabloReyes所述)。您也可以使用itertools.cycle

In [4]: import itertools

In [5]: for name, color in zip(w, itertools.cycle(Spectral11)):
    ...:     print(name, color)
    ...:
F1 #5e4fa2
F2 #3288bd
F3 #66c2a5
F4 #abdda4
F5 #e6f598
F6 #ffffbf
F7 #fee08b
F8 #fdae61
F9 #f46d43
F10 #d53e4f
F11 #9e0142
F12 #5e4fa2
G1 #3288bd
G2 #66c2a5
G3 #abdda4
G4 #e6f598
G5 #ffffbf
G6 #fee08b
G7 #fdae61
G8 #f46d43
G9 #d53e4f
G10 #9e0142
G11 #5e4fa2
G12 #3288bd

您可能还想使用line_dash参数。

In [6]: import bokeh.plotting
   ...: import numpy as np
   ...: import pandas as pd
   ...:
   ...: bokeh.plotting.output_file('cycle_demo.html')
   ...: lines = np.random.random((100, len(w))) + np.arange(24)
   ...: df = pd.DataFrame(lines)
   ...: df.columns = w
   ...:
   ...: line_dash_styles = [[10, 0], [20, 1], [10, 1], [5, 1]]
   ...: p = bokeh.plotting.figure()
   ...: for name, color, line_dash in zip(w, itertools.cycle(Spectral11), itertools.cycle(line_dash_styles)):
   ...:     p.line(np.arange(100), df[name], color=color, legend=name, line_dash=line_dash)
   ...:
   ...: p.legend.location = "top_left"
   ...: bokeh.plotting.show(p)
   ...:

enter image description here

答案 1 :(得分:2)

有不同类型的调色板,颜色数不同。检查:http://bokeh.pydata.org/en/latest/docs/reference/palettes.html。你可以选择其中之一。

我建议那些functions,你可以从像viridis或inferno这样的大调色板中指定你想要的颜色数。

from bokeh.palettes import inferno
mypalette = inferno(24)

在Jupyter笔记本中使用随机行测试:

import bokeh
import bokeh.plotting
import numpy as np
bokeh.io.output_notebook()

lines = np.random.random((24,100))
p = bokeh.plotting.figure()
mypalette24 = bokeh.palettes.inferno(24)
for i,color in enumerate(mypalette24):
    p.line(np.arange(100),i+lines[i,:],color=color,legend=str(i+1))
p.legend.location = "top_left"
bokeh.io.show(p)

Simple_Example