我有以下错误陈述......
ValueError: Error when checking model target: expected activation_2 to have shape (None, 761, 1) but got array with shape (1, 779, 1)
如果出现错误,我不知道761号码的含义,data1
的形状为779 * 80
,data3
的形状为779 * 1
。谢谢你的帮助!
from __future__ import print_function
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, \
Dropout, \
Activation, \
Flatten
from keras.layers import Convolution1D, \
MaxPooling2D, \
Convolution2D
from keras.utils import np_utils
import scipy.io as sio
import numpy as np
matfn = 'LIVE_data.mat'
data = sio.loadmat(matfn)
data0 = data['data']
data1 = np.ones((1, 779, 80))
data1[0, :, :] = data0
data00 = data['label']
data2 = np.ones((1,779,1))
data2[0, :, :] = data00
data000 = data['ref_ind_live']
data3 = np.ones((1, 779, 1))
data3[0, :, :] = data000
batch_size = 64
nb_classes = 30
nb_epoch = 50
X_train = data1
y_train = data3
X_test = data1[0, :]
y_test = data3[0, :]
X_train = X_train.astype('double')
X_test = X_test.astype('double')
X_train /= 255
X_test /= 255
# Convert class vectors to binary class matrices.
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
model = Sequential()
model.add(Convolution1D(32, \
10, \
border_mode = 'same', \
input_shape = (779, \
80)))
model.add(Activation('relu'))
model.add(Convolution1D(64, \
10, \
activation='relu'))
model.add(Dropout(0.25))
model.add(Convolution1D(128, \
10, \
activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('softmax'))
# Let's train the model using RMSprop
model.compile(loss = 'categorical_crossentropy', \
optimizer = 'rmsprop', \
metrics=['accuracy'])
print("start train")
model.fit(X_train, \
Y_train, \
batch_size = batch_size, \
nb_epoch = nb_epoch, \
shuffle = True)
print("end")
score = model.evaluate(X_test, \
Y_test, \
batch_size = 32)
print('Test score:', \
score[0])
print('Test accuracy:', \
score[1])
答案 0 :(得分:0)
您的模型输出形状为(779, 1)
,并且在最终层中预期相同的形状,但由于2卷积运算减少到761.因此,通过在其他2卷积层中添加border_mode = 'same'
将解决问题。
您可以登记模型摘要:
图层(类型)输出形状参数#
conv1d_1(Conv1D)(无,779,32)25632
activation_1(激活)(无,779,32)0
conv1d_2(Conv1D)(无,770,64)20544
dropout_1(Dropout)(无,770,64)0
conv1d_3(Conv1D)(无,761,128)82048
dropout_2(Dropout)(无,761,128)0
dense_13(密集)(无,761,1)129
activation_2(激活)(无,761,1)0