当我尝试编译时,我得到了这个错误:
In member function 'double search::IDAstar<State, MoveContainer>::dfs(const State&, double)': 153:18: error: need 'typename' before
'MoveContainer:: const_iterator' because 'MoveContainer' is a dependent scope 153:48: error: expected ';' before 'it' 154:17: error: 'it'
was not declared in this scope
In member function '{anonymous}::State& {anonymous}::State::operator=(const {anonymous}::State&)':
234:9: warning: no return statement in function returning non-void [-Wreturn-type] In instantiation of
'double search::IDAstar<State, MoveContainer>::dfs(const State&, double) [with State = {anonymous}::State; MoveContainer = std::list<search::Move<{anonymous}::State> >]':
122:34: required from 'std::list<State> search::IDAstar<State, MoveContainer>::solve(const State&)
[with State = {anonymous}::State; MoveContainer = std::list<search::Move<{anonymous}::State> >]' 371:55: required from here
152:57: error: invalid initialization of non-const reference of type 'std::list<search::Move<{anonymous}::State> >&' from an rvalue of type
'{anonymous}::State::MoveContainer {aka std::list<search::Move<{anonymous}::State> >}' 153:66: error: dependent-name 'MoveContainer:: const_iterator'
is parsed as a non-type, but instantiation yields a type 153:66: note: say 'typename MoveContainer:: const_iterator' if a type is meant
search_IDAstar.h
///////////////////////////////////////////////////////////////////////////////
//
// search_IDAstar.h
//
///////////////////////////////////////////////////////////////////////////////
#ifndef SEARCH_IDASTAR_H
#define SEARCH_IDASTAR_H
#include <list>
#include <limits> // infinity
namespace search
{
// A Move is a generic successor of a State (see IDAstar below).
template<typename State>
class Move
{
public:
// Create a move to the given successor state with the given cost.
Move(const State& s, double g) :
s(s),
g(g)
{
// empty
}
// Destructor
~Move()
{
// empty
}
// Copy constructor
Move(const Move& copy) :
s(copy.s),
g(copy.g)
{
// empty
}
// Assignment operator
Move& operator= (const Move& rhs)
{
s = rhs.s;
g = rhs.g;
}
// Return successor state.
State state() const
{
return s;
}
// Return cost of this move.
double cost() const
{
return g;
}
private:
State s;
double g;
};
// IDAstar is a generic implementation of the IDA* search algorithm.
//
// Instances of the parameter State should implement the following methods:
//
// double State::h() const;
// bool State::isGoal() const;
// MoveContainer State::successors(std::list<State>& solution) const;
//
// where h() is an admissible heuristic, isGoal() returns true iff the
// state is a goal state, and successors() returns a container of moves,
// each of which implements the following methods:
//
// State state() const;
// double cost() const;
//
// where state() is a successor state and cost() is the cost of the
// corresponding move. The successors() method may exclude cycles using
// the given partial solution sequence of states.
template<typename State, typename MoveContainer = std::list<Move<State> > >
class IDAstar
{
public:
// Constructor
IDAstar() :
solution(),
solved(false),
fLimit(0),
inf(std::numeric_limits<double>::infinity())
{
// empty
}
// Destructor
~IDAstar()
{
// empty
}
// Use IDA* search to find an optimal path from the given state to a
// goal state. Return a list of states from the given state to the
// goal state, or an empty list if no solution exists.
std::list<State> solve(const State& s)
{
solution.clear();
solved = false;
fLimit = s.h();
while (!solved && fLimit < inf)
{
fLimit = dfs(s, 0);
}
return solution;
}
private:
// Private unimplemented copy constructor and assignment operator
IDAstar(const IDAstar& copy);
IDAstar& operator= (const IDAstar& rhs);
std::list<State> solution;
bool solved;
double fLimit;
double inf;
double dfs(const State& s, double g)
{
double f = g + s.h();
if (f > fLimit)
{
return f;
}
solution.push_back(s);
if (s.isGoal())
{
solved = true;
return f;
}
double fMin = inf;
MoveContainer& moves = s.successors(solution);
for (MoveContainer::const_iterator it = moves.begin();
it != moves.end(); ++it)
{
f = dfs(it->state(), g + it->cost());
if (solved)
{
return f;
}
if (f < fMin)
{
fMin = f;
}
}
solution.pop_back();
return fMin;
}
};
} // namespace search
#endif
tiles.cpp
///////////////////////////////////////////////////////////////////////////////
//
// tiles.cpp
//
///////////////////////////////////////////////////////////////////////////////
#include "search_IDAstar.h"
#include <vector>
#include <algorithm> // find
#include <cstdlib> // abs
#include <iostream>
#include <ctime>
namespace // unnamed namespace
{
// Number of rows/columns in the sliding tile puzzle.
const int rows = 4;
const int columns = 4;
const int size = rows*columns;
// Manhattan distance heuristic.
int manhattan[size][size];
// A State is a configuration of a sliding tile puzzle.
class State
{
public:
// A state may be specified as a vector, where tiles[i] is the tile in
// the i-th position in row-major order, and the blank is specified as
// rows*columns == size == tiles.size().
typedef std::vector<int> Tiles;
// Constructor
State(const Tiles& tiles) :
tiles(tiles),
blank(0)
{
for (int i = 0; i < size; ++i)
{
if (tiles[i] == size)
{
blank = i;
break;
}
}
}
// Destructor
~State()
{
// empty
}
// Copy constructor
State(const State& copy) :
tiles(copy.tiles),
blank(copy.blank)
{
// empty
}
// Assignment operator
State& operator= (const State& rhs)
{
tiles = rhs.tiles;
blank = rhs.blank;
}
// Equality operator
bool operator== (const State& rhs)
{
for (int i = 0; i < size; ++i)
{
if (tiles[i] != rhs.tiles[i])
{
return false;
}
}
return true;
}
// Return admissible heuristic.
double h() const
{
int cost = 0;
for (int i = 0; i < size; ++i)
{
if (i != blank)
{
cost += manhattan[i][tiles[i] - 1];
}
}
return cost;
}
// Return true iff this state is a goal state.
bool isGoal() const
{
for (int i = 0; i < size; ++i)
{
if (tiles[i] != i + 1)
{
return false;
}
}
return true;
}
// Return successors of this state.
typedef search::Move<State> Move;
typedef std::list<Move> MoveContainer;
MoveContainer successors(std::list<State>& solution) const
{
MoveContainer moves;
// Move blank right.
if ((blank + 1)%columns != 0)
{
State s(*this);
s.tiles[blank] = tiles[blank + 1];
s.tiles[blank + 1] = size;
s.blank = blank + 1;
if (std::find(solution.begin(), solution.end(), s) ==
solution.end())
{
moves.push_back(Move(s, 1));
}
}
// Move blank up.
if (blank - columns >= 0)
{
State s(*this);
s.tiles[blank] = tiles[blank - columns];
s.tiles[blank - columns] = size;
s.blank = blank - columns;
if (std::find(solution.begin(), solution.end(), s) ==
solution.end())
{
moves.push_back(Move(s, 1));
}
}
// Move blank left.
if (blank%columns != 0)
{
State s(*this);
s.tiles[blank] = tiles[blank - 1];
s.tiles[blank - 1] = size;
s.blank = blank - 1;
if (std::find(solution.begin(), solution.end(), s) ==
solution.end())
{
moves.push_back(Move(s, 1));
}
}
// Move blank down.
if (blank + columns < size)
{
State s(*this);
s.tiles[blank] = tiles[blank + columns];
s.tiles[blank + columns] = size;
s.blank = blank + columns;
if (std::find(solution.begin(), solution.end(), s) ==
solution.end())
{
moves.push_back(Move(s, 1));
}
}
return moves;
}
Tiles tiles;
int blank;
};
} // unnamed namespace
int main()
{
// Initialize pre-computed Manhattan distance heuristic.
for (int i = 0; i < size; ++i)
{
for (int j = 0; j < size; ++j)
{
manhattan[i][j] = std::abs(i/columns - j/columns) +
std::abs(i%columns - j%columns);
}
}
// Get starting puzzle configuration.
std::cout << "Enter puzzle: ";
State::Tiles tiles;
for (int i = 0; i < size; ++i)
{
int t;
std::cin >> t;
tiles.push_back(t);
}
// Search for a solution.
search::IDAstar<State> ida;
std::clock_t tic = std::clock();
std::list<State> solution = ida.solve(State(tiles));
std::clock_t toc = std::clock();
// Display solution.
std::cout << "Solution in " << static_cast<int>(solution.size()) - 1 <<
" moves." << std::endl;
for (std::list<State>::iterator it = solution.begin(); it != solution.end(); ++it)
{
State::Tiles& tiles = (*it).tiles;
for (size_t i = 0; i < tiles.size(); ++i)
{
std::cout << tiles[i] << " ";
}
std::cout << std::endl;
}
std::cout << "Elapsed time = " <<
static_cast<double>(toc - tic)/CLOCKS_PER_SEC << " seconds." <<
std::endl;
}
第一个错误MoveContainer :: const_iterator我输入auto,那是临时修复。首先我认为问题是whit命名空间或iostream,但事实并非如此。我用linux中的c ++ 11,c ++ 14编译。程序是算法IDA *的例子,用于解决15个难题。
答案 0 :(得分:1)
153:18: error: need 'typename' before 'MoveContainer:: const_iterator'
because 'MoveContainer' is a dependent scope
这个告诉你该怎么做。变化
for (MoveContainer::const_iterator it = moves.begin();
到
for (typename MoveContainer::const_iterator it = moves.begin();
请参阅Where and why do I have to put the "template" and "typename" keywords?
234:9: warning: no return statement in function returning non-void
就像它说的那样,你的State::operator=
缺少一个返回声明。
// Assignment operator
State& operator= (const State& rhs)
{
tiles = rhs.tiles;
blank = rhs.blank;
return *this;
}
或者更好的是,根据零规则,根本不要定义operator=
。
52:57: error: invalid initialization of non-const reference of type
'std::list<search::Move<{anonymous}::State> >&' from an rvalue of type
'{anonymous}::State::MoveContainer {aka
std::list<search::Move<{anonymous}::State> >}'
就在这里:
MoveContainer& moves = s.successors(solution);
您尝试从按值返回的函数初始化引用。删除参考:
MoveContainer moves = s.successors(solution);
答案 1 :(得分:0)
在c ++模板中,dependent names被假定为值/函数,并且只有在使用typename或template关键字明确声明它时才能将其解析为类型名称或模板。
在这种情况下,MoveContainer::const_iterator
是一个取决于模板参数MoveContainer
的名称,因此您需要告诉编译器它是一个类型名称:
for (typename MoveContainer::const_iterator it = moves.begin();
it != moves.end(); ++it)
{
//...
}
有关为何需要这些内容的详细信息,请参阅this answer。
答案 2 :(得分:0)
错误消息非常明确:
error: need 'typename' before
'MoveContainer:: const_iterator' because 'MoveContainer' is a dependent scope
如果您只是将代码更改为
for (typename MoveContainer::const_iterator it = moves.begin();
it != moves.end(); ++it)
那么它应该编译。
原因是对于像MoveContainer :: const_iterarator这样的模板参数,编译器无法判断'const_iterator'是类型还是静态成员。使用'typename'告诉它它是一个类型。较旧的编译器对此并不严格,并且在升级到更新的编译器时经常会出现此错误。