我似乎无法调试此问题。它说
from sklearn.pipeline import Pipeline, FeatureUnion
from Transformers import TextTransformer
a = TextTransformer('description', max_features=50)
b = TextTransformer('features', max_features=10)
pipeline = Pipeline([
('description', a ) # can pass in either a pipeline
])
pipeline2 = Pipeline([
('features', b) # can pass in either a pipeline
])
feat = FeatureUnion([
('dpipeline',pipeline),
('fpipeline', pipeline2),
])
pipe = Pipeline([
('featurize', feat),
('clf', SVC()),
])
pipe.fit(df,df['interest_level'])
pipe.predict(df)
错误:TypeError: expected string or buffer
当我运行pipe.fit(df,df [' interest_level'])
为什么会这样?我尝试做的是拆分管道,然后将它们与功能联合联合起来。最终的管道将包含所有功能和最终估算。