此:
import numpy as np
a = np.array([1, 2, 1])
w = np.array([[.5, .6], [.7, .8], [.7, .8]])
print(np.dot(a, w))
# [ 2.6 3. ] # plain nice old matrix multiplication n x (n, m) -> m
import tensorflow as tf
a = tf.constant(a, dtype=tf.float64)
w = tf.constant(w)
with tf.Session() as sess:
print(tf.matmul(a, w).eval())
结果:
C:\_\Python35\python.exe C:/Users/MrD/.PyCharm2017.1/config/scratches/scratch_31.py
[ 2.6 3. ]
# bunch of errors in windows...
Traceback (most recent call last):
File "C:\_\Python35\lib\site-packages\tensorflow\python\framework\common_shapes.py", line 671, in _call_cpp_shape_fn_impl
input_tensors_as_shapes, status)
File "C:\_\Python35\lib\contextlib.py", line 66, in __exit__
next(self.gen)
File "C:\_\Python35\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 466, in raise_exception_on_not_ok_status
pywrap_tensorflow.TF_GetCode(status))
tensorflow.python.framework.errors_impl.InvalidArgumentError: Shape must be rank 2 but is rank 1 for 'MatMul' (op: 'MatMul') with input shapes: [3], [3,2].
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "C:/Users/MrD/.PyCharm2017.1/config/scratches/scratch_31.py", line 14, in <module>
print(tf.matmul(a, w).eval())
File "C:\_\Python35\lib\site-packages\tensorflow\python\ops\math_ops.py", line 1765, in matmul
a, b, transpose_a=transpose_a, transpose_b=transpose_b, name=name)
File "C:\_\Python35\lib\site-packages\tensorflow\python\ops\gen_math_ops.py", line 1454, in _mat_mul
transpose_b=transpose_b, name=name)
File "C:\_\Python35\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 763, in apply_op
op_def=op_def)
File "C:\_\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 2329, in create_op
set_shapes_for_outputs(ret)
File "C:\_\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 1717, in set_shapes_for_outputs
shapes = shape_func(op)
File "C:\_\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 1667, in call_with_requiring
return call_cpp_shape_fn(op, require_shape_fn=True)
File "C:\_\Python35\lib\site-packages\tensorflow\python\framework\common_shapes.py", line 610, in call_cpp_shape_fn
debug_python_shape_fn, require_shape_fn)
File "C:\_\Python35\lib\site-packages\tensorflow\python\framework\common_shapes.py", line 676, in _call_cpp_shape_fn_impl
raise ValueError(err.message)
ValueError: Shape must be rank 2 but is rank 1 for 'MatMul' (op: 'MatMul') with input shapes: [3], [3,2].
Process finished with exit code 1
(不确定为什么在处理过程中会引发同样的异常)
Tensorflow exception with matmul中建议的解决方案是将向量重新整形为矩阵,但这导致了不必要的复杂代码 - 是否仍然没有其他方法将向量与矩阵相乘?
顺便使用expand_dims
(如上面的链接所示)和默认参数会引发一个ValueError
- docs中没有提到它,并且违背了默认参数的目的。< / p>
答案 0 :(得分:11)
tf.einsum
使您能够以简洁直观的形式完成所需的操作:
with tf.Session() as sess:
print(tf.einsum('n,nm->m', a, w).eval())
# [ 2.6 3. ]
您甚至可以明确地撰写评论n x (n, m) -> m
。在我看来,它更具可读性和直观性。
我最喜欢的用例是当你想将一批矩阵乘以权重向量时:
n_in = 10
n_step = 6
input = tf.placeholder(dtype=tf.float32, shape=(None, n_step, n_in))
weights = tf.Variable(tf.truncated_normal((n_in, 1), stddev=1.0/np.sqrt(n_in)))
Y_predict = tf.einsum('ijk,kl->ijl', input, weights)
print(Y_predict.get_shape())
# (?, 6, 1)
因此,您可以轻松地在所有批次上加权,而不进行转换或重复。这不是通过像其他答案那样扩展尺寸来做到的。因此,您要避免tf.matmul
要求批量和其他外部维度具有匹配的维度:
输入必须在任何转置之后是rank> = 2的张量,其中内部2维指定有效矩阵乘法参数,并且任何其他外部维度匹配。
答案 1 :(得分:10)
Matmul编码为二级或更高级别的张量。不知道为什么说实话,因为numpy也允许矩阵向量乘法。
import numpy as np
a = np.array([1, 2, 1])
w = np.array([[.5, .6], [.7, .8], [.7, .8]])
print(np.dot(a, w))
# [ 2.6 3. ] # plain nice old matix multiplication n x (n, m) -> m
print(np.sum(np.expand_dims(a, -1) * w , axis=0))
# equivalent result [2.6, 3]
import tensorflow as tf
a = tf.constant(a, dtype=tf.float64)
w = tf.constant(w)
with tf.Session() as sess:
# they all produce the same result as numpy above
print(tf.matmul(tf.expand_dims(a,0), w).eval())
print((tf.reduce_sum(tf.multiply(tf.expand_dims(a,-1), w), axis=0)).eval())
print((tf.reduce_sum(tf.multiply(a, tf.transpose(w)), axis=1)).eval())
# Note tf.multiply is equivalent to "*"
print((tf.reduce_sum(tf.expand_dims(a,-1) * w, axis=0)).eval())
print((tf.reduce_sum(a * tf.transpose(w), axis=1)).eval())
答案 2 :(得分:0)
您可以使用tf.tensordot
并设置axes=1
。对于向量乘以矩阵的简单运算,这比tf.einsum
tf.tensordot(a, w, 1)