提取numpy数组的子数组,其值大于阈值

时间:2017-04-06 15:02:31

标签: python arrays numpy slice

我有一个声音信号,作为一个numpy数组导入,我想把它切成块状的numpy数组。但是,我希望块只包含超过阈值的元素。例如:

threshold = 3
signal = [1,2,6,7,8,1,1,2,5,6,7]

应该输出两个数组

vec1 = [6,7,8]
vec2 = [5,6,7]

好的,以上是列表,但你明白我的观点。

这是我到目前为止所尝试的内容,但这只会杀死我的内存

def slice_raw_audio(audio_signal, threshold=5000):

    signal_slice, chunks = [], []

    for idx in range(0, audio_signal.shape[0], 1000):
        while audio_signal[idx] > threshold:
            signal_slice.append(audio_signal[idx])
         chunks.append(signal_slice)
    return chunks

3 个答案:

答案 0 :(得分:2)

这是一种方法 -

def split_above_threshold(signal, threshold):
    mask = np.concatenate(([False], signal > threshold, [False] ))
    idx = np.flatnonzero(mask[1:] != mask[:-1])
    return [signal[idx[i]:idx[i+1]] for i in range(0,len(idx),2)]

示例运行 -

In [48]: threshold = 3
    ...: signal = np.array([1,1,7,1,2,6,7,8,1,1,2,5,6,7,2,8,7,2])
    ...: 

In [49]: split_above_threshold(signal, threshold)
Out[49]: [array([7]), array([6, 7, 8]), array([5, 6, 7]), array([8, 7])]

运行时测试

其他方法 -

# @Psidom's soln
def arange_diff(signal, threshold):
    above_th = signal > threshold
    index, values = np.arange(signal.size)[above_th], signal[above_th]
    return np.split(values, np.where(np.diff(index) > 1)[0]+1)

# @Kasramvd's soln   
def split_diff_step(signal, threshold):   
    return np.split(signal, np.where(np.diff(signal > threshold))[0] + 1)[1::2]

计时 -

In [67]: signal = np.random.randint(0,9,(100000))

In [68]: threshold = 3

# @Kasramvd's soln 
In [69]: %timeit split_diff_step(signal, threshold)
10 loops, best of 3: 39.8 ms per loop

# @Psidom's soln
In [70]: %timeit arange_diff(signal, threshold)
10 loops, best of 3: 20.5 ms per loop

In [71]: %timeit split_above_threshold(signal, threshold)
100 loops, best of 3: 8.22 ms per loop

答案 1 :(得分:2)

这是一种Numpythonic方法:

In [115]: np.split(signal, np.where(np.diff(signal > threshold))[0] + 1)
Out[115]: [array([1, 2]), array([6, 7, 8]), array([1, 1, 2]), array([5, 6, 7])]

请注意,这将为您提供基于分割逻辑(基于diff和继续项目)的所有较低和较高项目,它们始终是交错的,这意味着您可以简单地将它们分开索引:

In [121]: signal = np.array([1,2,6,7,8,1,1,2,5,6,7])

In [122]: np.split(signal, np.where(np.diff(signal > threshold))[0] + 1)[::2]
Out[122]: [array([1, 2]), array([1, 1, 2])]

In [123]: np.split(signal, np.where(np.diff(signal > threshold))[0] + 1)[1::2]
Out[123]: [array([6, 7, 8]), array([5, 6, 7])]

您可以使用列表中第一项与threshold的比较,以找出上述哪一项切片会为您提供上层项目。

通常,您可以使用以下代码段来获取上面的项目:

np.split(signal, np.where(np.diff(signal > threshold))[0] + 1)[signal[0] < threshold::2]

答案 2 :(得分:1)

这是一个选项:

above_th = signal > threshold
index, values = np.arange(signal.size)[above_th], signal[above_th]
np.split(values, np.where(np.diff(index) > 1)[0]+1)
# [array([6, 7, 8]), array([5, 6, 7])]

包装功能:

def above_thresholds(signal, threshold):
    above_th = signal > threshold
    index, values = np.arange(signal.size)[above_th], signal[above_th]
    return np.split(values, np.where(np.diff(index) > 1)[0]+1)

above_thresholds(signal, threshold)
# [array([6, 7, 8]), array([5, 6, 7])]