说我有一个像这样的np.array:
a = [1, 3, 4, 5, 60, 43, 53, 4, 46, 54, 56, 78]
是否有一种快速的方法来获取3个连续数字都超过某个阈值的所有位置的索引?也就是说,对于某个阈值th
,获得所有x
所在的位置:
a[x]>th and a[x+1]>th and a[x+2]>th
示例:对于阈值40和上面给出的列表,x应该为[4,8,9]
。
非常感谢。
答案 0 :(得分:7)
方法1
在比较后获得的布尔数组的掩码上使用convolution
-
In [40]: a # input array
Out[40]: array([ 1, 3, 4, 5, 60, 43, 53, 4, 46, 54, 56, 78])
In [42]: N = 3 # compare N consecutive numbers
In [44]: T = 40 # threshold for comparison
In [45]: np.flatnonzero(np.convolve(a>T, np.ones(N, dtype=int),'valid')>=N)
Out[45]: array([4, 8, 9])
方法2
使用binary_erosion
-
In [77]: from scipy.ndimage.morphology import binary_erosion
In [31]: np.flatnonzero(binary_erosion(a>T,np.ones(N, dtype=int), origin=-(N//2)))
Out[31]: array([4, 8, 9])
方法3(特殊情况):检查少量连续数字
要检查少量的连续数字(在这种情况下为3),我们也可以在比较的掩码上slicing
以取得更好的性能-
m = a>T
out = np.flatnonzero(m[:-2] & m[1:-1] & m[2:])
给定样本中100000
重复/平铺数组上的时间-
In [78]: a
Out[78]: array([ 1, 3, 4, 5, 60, 43, 53, 4, 46, 54, 56, 78])
In [79]: a = np.tile(a,100000)
In [80]: N = 3
In [81]: T = 40
# Approach #3
In [82]: %%timeit
...: m = a>T
...: out = np.flatnonzero(m[:-2] & m[1:-1] & m[2:])
1000 loops, best of 3: 1.83 ms per loop
# Approach #1
In [83]: %timeit np.flatnonzero(np.convolve(a>T, np.ones(N, dtype=int),'valid')>=N)
100 loops, best of 3: 10.9 ms per loop
# Approach #2
In [84]: %timeit np.flatnonzero(binary_erosion(a>T,np.ones(N, dtype=int), origin=-(N//2)))
100 loops, best of 3: 11.7 ms per loop
答案 1 :(得分:1)
尝试:
th=40
results = [ x for x in range( len( array ) -2 ) if(array[x:x+3].min() > th) ]
这是
的列表理解th=40
results = []
for x in range( len( array ) -2 ):
if( array[x:x+3].min() > th ):
results.append( x )
答案 2 :(得分:1)
使用numpy.lib.stride_tricks.as_strided
的另一种方法:
in [59]: import numpy as np
In [60]: from numpy.lib.stride_tricks import as_strided
定义输入数据:
In [61]: a = np.array([ 1, 3, 4, 5, 60, 43, 53, 4, 46, 54, 56, 78])
In [62]: N = 3
In [63]: threshold = 40
计算结果; q
是“大”值的布尔掩码。
In [64]: q = a > threshold
In [65]: result = np.all(as_strided(q, shape=(len(q)-N+1, N), strides=(q.strides[0], q.strides[0])), axis=1).nonzero()[0]
In [66]: result
Out[66]: array([4, 8, 9])
再次使用N = 4
:
In [67]: N = 4
In [68]: result = np.all(as_strided(q, shape=(len(q)-N+1, N), strides=(q.strides[0], q.strides[0])), axis=1).nonzero()[0]
In [69]: result
Out[69]: array([8])