我尝试执行的操作类似于mysql delete语句:
DELETE FROM ABCD WHERE val_2001>val_2000*1.5 OR val_2001>val_1999*POW(1.5,2);
column_names从val_2001变为val_2017。
表ABCD中的所有数据都被转储到csv并加载到df。
如何迭代每列并与之前的列进行比较并执行删除操作? (python新手)
表数据样本:
val_2000 val_2001 val_2002 val_2003 100 112.058663384525 119.070787312921 117.033250060214 100 118.300395256917 124.655238202362 128.723125524235 100 109.333236619151 116.785836024946 117.390803371386 100 120.954175930764 126.099776250454 124.491022271481 100 107.776153227575 105.560100052722 108.07490649383 100 151.596517146962 306.608812920781 124.610273175528
注意:有些列也不需要迭代。
示例输出:
val_2000 val_2001 val_2002 val_2003 100 112.058663384525 119.070787312921 117.033250060214 100 118.300395256917 124.655238202362 128.723125524235 100 109.333236619151 116.785836024946 117.390803371386 100 120.954175930764 126.099776250454 124.491022271481 100 107.776153227575 105.560100052722 108.07490649383 100 NULL NULL 124.610273175528
编辑: - 目前正在尝试这种方式:
df = pd.read_csv("singleDataFile.csv")
for values in xrange(2000,2016):
val2 = values+1
df['val_'+str(val2)] = df['val_'+str(val2)].where((df['val_'+str(val2)]>df['val_'+str(values)]*1.5) | (df['val_'+str(val2)]<df['val_'+str(values)]*0.75))
print(df)
获取格式错误
答案 0 :(得分:2)
此代码会创建一个随机的DataFrame,它可以非常接近地模仿您的DataFrame。似乎你的问题的关键组成部分之一是迭代多个列,这是(通过熊猫)。
构建DataFrame:
cols = [ 'val_{}'.format(c) for c in range(2000, 2018)]
d = {}
for c in cols:
d[c] = np.random.rand(10) * 200 + 100
df = pd.DataFrame(d, columns = cols)
输出:
val_2000 val_2001 val_2002 val_2003 val_2004 val_2005 \
0 138.795742 178.467087 131.461771 151.475698 217.449107 107.680520
1 127.857106 217.484552 248.528498 155.661208 281.914679 211.313490
2 278.366253 137.543827 167.605495 129.869768 272.923010 190.659691
3 221.798435 206.622385 145.636888 236.499951 212.404028 122.954408
4 122.994183 299.793792 171.987895 246.948802 290.938506 127.846811
5 264.400326 203.226235 121.972832 137.858361 161.812761 270.464277
6 156.253907 280.101596 138.100352 164.018757 121.044386 297.869079
7 186.572007 146.406624 110.309996 270.895300 101.975819 229.314098
8 195.470896 286.125937 251.778581 259.112738 207.539354 127.895095
9 168.135585 261.295740 203.234246 279.825177 188.648541 197.145975
核心代码:
df[(df.shift(axis = 1) > df * 1.5) | (df.shift(axis = 1) < df * 0.75)] = 'NULL'
输出:
val_2000 val_2001 val_2002 val_2003 val_2004 val_2005 \
0 138.795742 178.467 131.461771 151.476 NULL 107.681
1 127.857106 NULL 248.528498 155.661 NULL 211.313
2 278.366253 137.544 167.605495 129.87 NULL 190.66
3 221.798435 206.622 145.636888 NULL 212.404 122.954
4 122.994183 NULL 171.987895 NULL 290.939 127.847
5 264.400326 203.226 121.972832 137.858 161.813 NULL
6 156.253907 NULL 138.100352 164.019 121.044 NULL
7 186.572007 146.407 110.309996 NULL 101.976 NULL
8 195.470896 NULL 251.778581 259.113 207.539 127.895
9 168.135585 NULL 203.234246 NULL 188.649 197.146
答案 1 :(得分:1)
您希望在要更改的列上使用Series.where功能。例如,第一列可以通过以下方式实现:
df['val_2001'] = df['val_2001'].where( df['val_2001']>df['val_2000']*1.5 )
编辑(响应OP评论):您可以使用python表示法|
添加OR,例如,如下所示:
df['val_2001'] = df['val_2001'].where( (df['val_2001']>df['val_2000']*1.5) | (df['val_2001']<df['val_2000']*0.75) )