检查列值是否在pandas

时间:2017-03-29 12:22:18

标签: python pandas

我在pandas中有以下数据框

  target   A       B      C
0 cat      bridge  cat    brush  
1 brush    dog     cat    shoe
2 bridge   cat     shoe   bridge

如何测试df.target是否位于要检查的列数很多的['A','B','C', etc.]列中?

我尝试将A,B和C合并为字符串以使用df.abcstring.str.contains(df.target),但这不起作用。

5 个答案:

答案 0 :(得分:8)

您可以使用dropisinany

  • drop target列只包含您的ABC
  • 检查目标列的值isin
  • 并检查是否存在any点击

那就是它。

df["exists"] = df.drop("target", 1).isin(df["target"]).any(1)
print(df)

    target  A       B       C       exists
0   cat     bridge  cat     brush   True
1   brush   dog     cat     shoe    False
2   bridge  cat     shoe    bridge  True

答案 1 :(得分:2)

如果按行检查,您可以使用eq删除列pop

mask = df.eq(df.pop('target'), axis=0)
print (mask)
       A      B      C
0  False   True  False
1  False  False  False
2  False  False   True

然后如果需要检查至少一个True添加any

mask = df.eq(df.pop('target'), axis=0).any(axis=1)
print (mask)
0     True
1    False
2     True
dtype: bool

df['new'] = df.eq(df.pop('target'), axis=0).any(axis=1)
print (df)
        A     B       C    new
0  bridge   cat   brush   True
1     dog   cat    shoe  False
2     cat  shoe  bridge   True

但如果需要检查列中的所有值,请使用isin

mask = df.isin(df.pop('target').values.tolist())
print (mask)
       A      B      C
0   True   True   True
1  False   True  False
2   True  False   True

如果要检查所有值是否True添加all

df['new'] = df.isin(df.pop('target').values.tolist()).all(axis=1)
print (df)
        A     B       C    new
0  bridge   cat   brush   True
1     dog   cat    shoe  False
2     cat  shoe  bridge  False

答案 2 :(得分:2)

OneHotEncoder方法:

In [165]: x = pd.get_dummies(df.drop('target',1), prefix='', prefix_sep='')

In [166]: x
Out[166]:
   bridge  cat  dog  cat  shoe  bridge  brush  shoe
0       1    0    0    1     0       0      1     0
1       0    0    1    1     0       0      0     1
2       0    1    0    0     1       1      0     0

In [167]: x[df['target']].eq(1).any(1)
Out[167]:
0    True
1    True
2    True
dtype: bool

说明:

In [168]: x[df['target']]
Out[168]:
   cat  cat  brush  bridge  bridge
0    0    1      1       1       0
1    0    1      0       0       0
2    1    0      0       0       1

答案 3 :(得分:1)

您可以使用为每一行应用一个函数来计算与“目标”列中的值匹配的值的数量:

df["exist"] = df.apply(lambda row:row.value_counts()[row['target']] > 1 , axis=1)

对于看起来像这样的数据框:

   b  c target
0  3  a      a
1  3  4      2
2  3  4      2
3  3  4      2
4  3  4      4

输出将是:

   b  c target  exist
0  3  a      a   True
1  3  4      2  False
2  3  4      2  False
3  3  4      2  False
4  3  4      4   True

答案 4 :(得分:1)

使用索引difference方法的另一种方法:

matches = df[df.columns.difference(['target'])].eq(df['target'], axis = 0)

#       A      B      C
#0  False   True  False
#1  False  False  False
#2  False  False   True

# Check if at least one match:
matches.any(axis = 1)

#Out[30]: 
#0     True
#1    False
#2     True

如果您想查看哪些列符合目标,可以使用以下解决方案:

matches.apply(lambda x: ", ".join(x.index[np.where(x.tolist())]), axis = 1)

Out[53]: 
0    B
1     
2    C
dtype: object