我可以使用以下代码创建和使用n热图,例如,让n为10:
random_matrix = np.random.rand(10,10)
number = 10
incrmnt = 1.0
x = list(range(1,number +1))
plt.pcolormesh(x, x, random_matrix)
plt.colorbar()
plt.xlim(1, number)
plt.xlabel('Number 1')
plt.ylim(1, number)
plt.ylabel('Number 2')
plt.tick_params(
axis = 'both',
which = 'both',
bottom = 'off',
top = 'off',
labelbottom = 'off',
right = 'off',
left = 'off',
labelleft = 'off')
我想在x和y轴的每一个附近添加一个2行热图,从row1 = np.random.rand(1,10)
和col1 = np.random.rand(1,10)
开始。
以下是我想要制作的示例图片:
提前致谢。
答案 0 :(得分:1)
您将创建一个子图网格,其中子图之间的宽高和高度比率对应于相应维度中的像素数。然后,您可以将相应的图添加到这些子图中。在下面的代码中,我使用了imshow
图,因为我发现在数组中每个项目有一个像素更直观(而不是少一个)。
为了让颜色条表示不同子图中的颜色,可以使用提供给每个子图的matplotlib.colors.Normalize
实例,以及为颜色条手动创建的ScalarMappable。
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
m = np.random.rand(10,10)
x = np.random.rand(1,m.shape[1])
y = np.random.rand(m.shape[0],1)
norm = matplotlib.colors.Normalize(vmin=0, vmax=1)
grid = dict(height_ratios=[1, m.shape[0]], width_ratios=[1,m.shape[0], 0.5 ])
fig, axes = plt.subplots(ncols=3, nrows=2, gridspec_kw = grid)
axes[1,1].imshow(m, aspect="auto", cmap="viridis", norm=norm)
axes[0,1].imshow(x, aspect="auto", cmap="viridis", norm=norm)
axes[1,0].imshow(y, aspect="auto", cmap="viridis", norm=norm)
axes[0,0].axis("off")
axes[0,2].axis("off")
axes[1,1].set_xlabel('Number 1')
axes[1,1].set_ylabel('Number 2')
for ax in [axes[1,1], axes[0,1], axes[1,0]]:
ax.set_xticks([]); ax.set_yticks([])
sm = matplotlib.cm.ScalarMappable(cmap="viridis", norm=norm)
sm.set_array([])
fig.colorbar(sm, cax=axes[1,2])
plt.show()