在python上的生成树

时间:2017-03-27 23:03:18

标签: python adjacency-list spanning-tree

我有这个hw:

  1. 从文件中读取边缘列表
  2. 将其变成邻接列表
  3. 输出图的未加权无向生成树(我们可以假设起点位于顶点0)
  4. 我有问题让3.正确输出。也就是说,文件1应该输出[[1],[0,2,3],[1],[1]]而我得到[[1,2],[0,3],[0],[1]]这是好的,因为它们都是来自文件1的n=4的生成树

    但这是主要问题:我不知道我的代码有什么问题,对于文件2:我得到:[[10], [], [10], [10], [], [], [], [], [], [], [0, 3, 2], [], []]

    我的代码末尾的文件数据。 (编辑:从tree=[]开始是问题所在,其余的没有问题)

    这是我对这个问题的尝试:

    import itertools
    
    edge_i=[]
    edge_j=[]
    x = []
    y = []
    edgelist = []
    n = int(input("Enter value for n:")) #input n for number of vertices
    adjlist = [[] for i in range(n)] #create n sublists inside empty initial adjlist
    data = [['0','1'],['2','1'],['0','2'],['1','3']]
    
    
    for line in data: #for loop for appending into adjacency list the correct indices taken from out of the edgelist
        #(this line won't be needed when hardcoding input) line = line.replace("\n","").split(" ")
        for values in line:
            values_as_int = int(values)
            edgelist.append(values_as_int)
    
    
    
    #set of vertices present in this file - pick out only n vertices
    verticesset=set(edgelist)
    listofusefulvertices=list(verticesset)[0:n]
    
    
    P = list(itertools.permutations(listofusefulvertices,2))
    
    
    x.append(edgelist[0::2])
    y.append(edgelist[1::2])
    x = sum(x,[])
    y = sum(y,[])
    dataint=zip(x,y)
    datatuples=list(dataint)
    outdata = set(datatuples)&set(P)
    output=list(outdata)
    
    
    for k in range(len(output)):
        edge_i.append(output[k][0])
        edge_i.append(output[k][1])
        edge_j.append(output[k][1])
        edge_j.append(output[k][0])
    
    for i in range(len(edge_i)):
        u = edge_i[i]
        v = edge_j[i]
        adjlist[u].append(v)
    print(adjlist)
    
    
    tree = []
    for vertexNum in range(len(listofusefulvertices)):
        tree.append([])
    treeVertices = [0]*n
    treeVertices[0]=1
    for vertex in range(0,n): #(here the range in skeletal code from school used 1,n but it only worked for me when I used 0,n-1 or 0,n)
        if treeVertices[vertex] == 1:
            for adjVertex in adjlist[vertex]:
                if treeVertices[adjVertex] == 0:
                    treeVertices[adjVertex]=1
                    tree[adjVertex].append(vertex)
                    tree[vertex].append(adjVertex)
    
    print(tree)
    
    
    #The data from files were: file 1: [['0','1'],['2','1'],['0','2'],['1','3']]
    # file 2: [['10','2'],['7','4'],['11','3'],['1','12'],['6','8'],['10','3'],['4','9'],['5','7'],['8','12'],['2','11'],['1','6'],['0','10'],['7','2'],['12','5']]
    

3 个答案:

答案 0 :(得分:2)

我没有浏览您的所有代码,您真的应该查看指南Minimal, complete, verifiable example

但是,将边缘列表转换为图表,然后使用标准mst算法,例如,整洁的:

def create_graph(edgelist):
    graph = {}
    for e1, e2 in edgelist:
        graph.setdefault(e1, []).append(e2)
        graph.setdefault(e2, []).append(e1)
    return graph

# Prim's
def mst(start, graph):
    closed = set()
    edges = []
    q = [(start, start)]
    while q:
        v1, v2 = q.pop()
        if v2 in closed:
            continue
        closed.add(v2)
        edges.append((v1, v2))
        for v in graph[v2]:
            if v in graph:
                q.append((v2, v))
    del edges[0]
    assert len(edges) == len(graph)-1
    return edges

>>> graph = create_graph([[10, 2], [7, 4], [11, 3], [1, 12], [6, 8], [10, 3], [4, 9], [5, 7], [8, 12], [2, 11], [1, 6], [0, 10], [7, 2], [12, 5]])
>>> min_gragh = create_graph(mst(0, graph))
>>> min_graph
{0: [10],
 1: [6],
 2: [11, 7],
 3: [10, 11],
 4: [7, 9],
 5: [7, 12],
 6: [8, 1],
 7: [2, 5, 4],
 8: [12, 6],
 9: [4],
 10: [0, 3],
 11: [3, 2],
 12: [5, 8]}
>>> [sorted(min_graph[k]) for k in sorted(min_graph)]
[[10], [6], [7, 11], [10, 11], [7, 9], [7, 12], [1, 8], [2, 4, 5], [6, 12], [4], [0, 3], [2, 3], [5, 8]]

图表可能有多个有效的MST,例如较小的edgelist生成[[2], [2, 3], [0, 1], [1]],这也是一个有效的MST,但与预期的输出不同。

答案 1 :(得分:1)

问题出在最后的主处理循环中。您使用节点0作为起始节点,但随后假设您的连接按数字顺序运行。您标记与节点0(仅节点10)相邻的所有节点,然后接下来接收节点1。那还没有连接,所以你跳过它......但你永远不会回来。

这是我的低技术调试运行中的代码和跟踪:

for vertex in range(0,n): #(here the range in skeletal code from school used 1,n but it only worked for me when I used 0,n-1 or 0,n)
    print ("Working on vertex", vertex, treeVertices[vertex] == 1)
    if treeVertices[vertex] == 1:
        for adjVertex in adjlist[vertex]:
            print ("  Adjacent vertex", adjVertex, treeVertices[adjVertex] == 0)
            if treeVertices[adjVertex] == 0:
                treeVertices[adjVertex]=1
                tree[adjVertex].append(vertex)
                tree[vertex].append(adjVertex)

print("Spanning tree", tree)

输出:

Adjacency list [[10], [12, 6], [11, 7, 10], [11, 10], [9, 7], [7, 12], [8, 1], [5, 4, 2], [6, 12], [4], [0, 3, 2], [2, 3], [1, 8, 5]]

Working on vertex 0 True
  Adjacent vertex 10 True
Working on vertex 1 False
Working on vertex 2 False
Working on vertex 3 False
Working on vertex 4 False
Working on vertex 5 False
Working on vertex 6 False
Working on vertex 7 False
Working on vertex 8 False
Working on vertex 9 False
Working on vertex 10 True
  Adjacent vertex 0 False
  Adjacent vertex 3 True
  Adjacent vertex 2 True
Working on vertex 11 False
Working on vertex 12 False
Spanning tree [[10], [], [10], [10], [], [], [], [], [], [], [0, 3, 2], [], []]

看到问题?该算法假设,如果从可用节点移动到更高编号的节点,则查找生成树的流将始终成功。由于这棵树需要几个" down"移动,你不能得到它们。从0开始,标记10,然后跳过节点1-9。当你到达10时,你会添加节点2和3 ......但是你永远不会回过头来展开它们,而这就是你所得到的。

要完成所有这些,请执行以下两项操作之一:

  1. 放置"未展开" "上的节点"做"列表,以[0]开头。您的 循环的会更改为,而会一直持续到该列表为空。
  2. 保留当前结构,但添加一个外部循环,直到所有节点都被标记,或者没有添加边缘(没有找到生成树)。
  3. 这会让你转向解决方案吗?

答案 2 :(得分:0)

我想我可能通过在顶点的for循环上面添加外部循环while all(treeVertices) == 0:来修复它。现在对于file2长列表中的n = 13,我得到了这个输出:[[10], [12, 6], [10, 11, 7], [10], [7, 9], [7, 12], [1], [2, 5, 4], [12], [4], [0, 3, 2], [2], [5, 1, 8]]我不明白的是,为什么没有while any(treeVertices) == 0:工作而且它必须是all()?我认为当treeVertices列表被1s部分填充时,它将不包含“all”零,但其中的“any”零,应该再次将迭代器发送回其循环。我在python中遇到过多个编码实例,其中any()和all()的使用对我有相反的效果,其中any()的作用类似于all(),而all()的行为与any()相同。知道为什么吗?