坚持为什么我的OpenCL内核不会使用特定参数执行

时间:2010-11-29 15:23:29

标签: opencl execution nvidia

我有一个在JOCL中运行的OpenCL内核,它通过了我所有的JUnit测试。我将我的代码移植到C ++中,因此我可以在相同条件下分析内核。除一个外,所有情况下驱动程序都能正常工作它在JOCL中运行得非常好,所以我相信我的C ++代码中的某些内容是错误的。我的代码如下,我已将其审核至死。如果有人能帮我发现错误,我会很感激。

驱动程序代码可以正常工作,args 1和2为8192,arg 3为512.它也适用于args 1和2为512,arg 3为8192. Arg 4始终为1,它将内核设置为实数。当我将args 1和2设置为262144并将arg 3设置为16时,它会执行,没有报告错误,没有seg错误,但内核最终不会更改数据。请注意,上述所有情况下arg 1 * 3等于2 ^ 22。我相信在所有情况下我都会分配相同数量的花车。我很难过。我无法让OpenCL告诉我出了什么问题:(

void HelperFunctions::callKernel(int windowSize, int primitivesPerDataFrame, int nInFramesThisCall, int realOrComplex)
{
// OpenCL Vars
cl_platform_id platform;       // OpenCL platform
cl_device_id device;           // OpenCL device
cl_context gpuContext;         // OpenCL context
cl_command_queue commandQueue; // OpenCL command queue
cl_program clProgram;           // OpenCL program
cl_kernel clkernel;             // OpenCL kernel
void *dataHostBuffer;        // Host buffer
void *windowDataHostBuffer;        // Host buffer
cl_mem inData;   // OpenCL device buffer
cl_mem windowData;  // OpenCL device source buffer
size_t szKernelLength;        // Byte size of kernel code
cl_int errCode;                // Error code var

long gridX = 256;
long gridY = 16384;
long gridZ = 1;
size_t global_work_size[] = {gridX, gridY, gridZ};
size_t local_work_size[] = {gridX, 1, 1};
const char* cSourceCL = NULL;     // Buffer to hold source for compilation

// Allocate and initialize host arrays
dataHostBuffer = (void *)malloc(sizeof(cl_float) * primitivesPerDataFrame * nInFramesThisCall);
windowDataHostBuffer = (void *)malloc(sizeof(cl_float) * windowSize);

//Populate the data buffers
dataHostBuffer = generateRampData(primitivesPerDataFrame * nInFramesThisCall);

windowDataHostBuffer = blackman(windowSize);

//Get an OpenCL platform
errCode = clGetPlatformIDs(1, &platform, NULL);
cout << "Error Code: " << errCode << endl;

//Get the devices
errCode = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device, NULL);
cout << "Error Code: " << errCode << endl;

//Create the context
gpuContext = clCreateContext(0, 1, &device, NULL, NULL, &errCode);
cout << "Error Code: " << errCode << endl;

// Create a command-queue
commandQueue = clCreateCommandQueue(gpuContext, device, 0, &errCode);

// Read the OpenCL kernel in from source file
cSourceCL = oclLoadProgSource("/home/djkasht/workspaceBlueprint/bp/bp-trunk/bundles/CopperShark/src/coppershark/dsp/blocks/opencl/dsp/window/Window.cl", "", &szKernelLength);

szKernelLength = strlen(cSourceCL);
// Create the program
clProgram = clCreateProgramWithSource(gpuContext, 1, (const char **)&cSourceCL, &szKernelLength, &errCode);
cout << "Error Code: " << errCode << endl;

// Build the program
errCode = clBuildProgram(clProgram, 0, NULL, NULL, NULL, NULL);
cout << "Error Code: " << errCode << endl;

size_t log_size = 1000000 * sizeof(char);
char build_log[log_size];
size_t len;
errCode = clGetProgramBuildInfo(clProgram, device, CL_PROGRAM_BUILD_LOG, log_size, build_log, &len);
cout << build_log << endl;

// Create the kernel
clkernel = clCreateKernel(clProgram, "window", &errCode);
cout << "Error Code: " << errCode << endl;

// Allocate the OpenCL buffer memory objects
inData = clCreateBuffer(gpuContext, CL_MEM_READ_WRITE, sizeof(cl_float) * primitivesPerDataFrame * nInFramesThisCall, NULL, &errCode);
cout << "Error Code: " << errCode << endl;
windowData = clCreateBuffer(gpuContext, CL_MEM_READ_ONLY, sizeof(cl_float) * windowSize, NULL, &errCode);
cout << "Error Code: " << errCode << endl;

// Set the Argument values
errCode = clSetKernelArg(clkernel, 0, sizeof(cl_mem), (void*)&inData);
cout << "Error Code: " << errCode << endl;
errCode = clSetKernelArg(clkernel, 1, sizeof(cl_mem), (void*)&windowData);
cout << "Error Code: " << errCode << endl;
errCode = clSetKernelArg(clkernel, 2, sizeof(cl_int), (void*)&windowSize);
cout << "Error Code: " << errCode << endl;
errCode = clSetKernelArg(clkernel, 3, sizeof(cl_int), (void*)&primitivesPerDataFrame);
cout << "Error Code: " << errCode << endl;
errCode = clSetKernelArg(clkernel, 4, sizeof(cl_int), (void*)&nInFramesThisCall);
cout << "Error Code: " << errCode << endl;
errCode = clSetKernelArg(clkernel, 5, sizeof(cl_int), (void*)&realOrComplex);
cout << "Error Code: " << errCode << endl;

// Asynchronous write of data to GPU device
errCode = clEnqueueWriteBuffer(commandQueue, inData, CL_FALSE, 0, sizeof(cl_float) * primitivesPerDataFrame * nInFramesThisCall, dataHostBuffer, 0, NULL, NULL);
cout << "Error Code: " << errCode << endl;

// Synchronous/blocking read of results, and check accumulated errors
errCode = clEnqueueWriteBuffer(commandQueue, windowData, CL_FALSE, 0, sizeof(cl_float) * windowSize, windowDataHostBuffer, 0, NULL, NULL);
cout << "Error Code: " << errCode << endl;

errCode = clEnqueueNDRangeKernel(commandQueue, clkernel, 3, NULL, &(global_work_size[0]), &(local_work_size[0]), 0, NULL, NULL);
cout << "Error Code: " << errCode << endl;

void* dataHostBuffer2 = (void *)malloc(sizeof(cl_float) * primitivesPerDataFrame * nInFramesThisCall);
errCode = clEnqueueReadBuffer(commandQueue, inData, CL_TRUE, 0, sizeof(cl_float) * primitivesPerDataFrame * nInFramesThisCall, dataHostBuffer2, 0, NULL, NULL);

}

1 个答案:

答案 0 :(得分:2)

更新,我明白了!问题出在我的内核中。我使用恒定的记忆。我的java代码解释了这一点,并以文本方式操作代码,以便如果我的缓冲区大小为arg 2&gt; 16384,它将__constant更改为__global。我应该知道这一点,但我忘了......