我想在某些光谱中找到模式。 Spectrum image
图片上的灰色圆圈图案应该看起来像2,所有数据看起来都相似。浅蓝色线条是原始数据,点缀深蓝色线条 - 平均超过6个点。我试图做一些大小的窗口和扫描数据,并检查y-flux值是否下降/上升到60以下ish%,但这似乎找到了其他区域和我想要的那个,或者只是我不想要的。
模式的宽度在我所拥有的光谱中并不总是相同的。有一张带有图案黑色虚线的光谱图片,但我的程序没有找到它。
我尝试改变窗口大小,但没有帮助。我可以使用一些模式识别算法来找到这种模式吗?有人能指点我吗?或者以简单的方式解释,因为我有点迷失在这,请?
这是我的代码:
import numpy as np
import matplotlib.pyplot as plt
from astropy.io import ascii
import glob
def reading(file_name):
data = ascii.read(file_name)
lam = data['col0'][1:-1]
#data offset *10**17 + 5
flux = data['col1'][1:-1]*10**17 + 5
return lam, flux
def percentChange(startPoint,currentPoint):
return abs(((currentPoint-startPoint)/startPoint))*100.00
def window(data, size):
n = len(data)
out = []
wind = data[0 : size]
i = size
while i + size/2 < n:
wind = data[i - size/2 : i + size/2]
tmp = percentChange(wind[0], wind[-1])
if tmp > 50.:
out.append([tmp, i - size/2, i + size/2])
i = i + size
return out
def window2(data, size):
n = len(data)
out = []
wind = data[0 : size]
i = size
while i + size/2 < n:
wind = data[i - size/2 : i + size/2]
tmp = percentChange(wind[0], wind[len(wind)/2])
if tmp > 50.:
out.append([tmp, i - size/2, i + size/2])
i = i + size
return out
def plotting(lamb, flux):
plt.rcParams['font.family'] = 'freeserif'
plt.rcParams['font.size'] = 12
plt.rcParams['axes.labelsize'] = 15
plt.rcParams['xtick.labelsize'] = 12
plt.rcParams['ytick.labelsize'] = 12
plt.rcParams['legend.fontsize'] = 12
plt.rcParams['figure.titlesize'] = 12
plt.rcParams['xtick.minor.visible'] = True
plt.rcParams['ytick.minor.visible'] = True
plt.plot(lamb, flux)
plt.xlabel("wavelenght [A]")
plt.ylabel("flux [erg/cm^2/s/A]")
def averaging(lamb, flux, param):
end = 1480
bin_flux_1 = [np.mean(flux[i : i + param]) for i in range(0, end, param)]
bin_lam_1 = [np.mean(lamb[i : i + param]) for i in range(0, end, param)]
return bin_lam_1, bin_flux_1
def main():
param = 6
stack = 6
for name in glob.glob('TRAIN/*.dat'):
print name
lamb, flux = reading(name)
lamb_a, flux_a = averaging(lamb, flux, param)
plotting(lamb, flux)
plotting(lamb_a, flux_a)
change = window(flux_a, stack)
change2 = window2(flux_a, stack)
minim = flux_a.index(min(flux_a))
for i in range(len(change)):
plt.axvline(lamb_a[change[i][1]], color='r', linestyle='--',linewidth=1)
plt.axvline(lamb_a[change[i][2]], color='r', linestyle='--',linewidth=1)
for i in range(len(change2)):
plt.axvline(lamb_a[change2[i][1]], color='y', linestyle='-',linewidth=1)
plt.axvline(lamb_a[change2[i][2]], color='y', linestyle='-',linewidth=1)
plt.axvline(lamb_a[minim], color='k', linestyle='--',linewidth=1)
plt.show()
if __name__ == "__main__":
main()
答案 0 :(得分:0)
你可以在线性O(n + m)
时间复杂度中使用Knuth-Morris-Pratt算法,其中n
和m
是文本和模式的长度。
KMP算法基本上是一种模式匹配算法(在大海捞针中查找针的起始位置),该算法适用于字符串。
def kmp_matcher(t, d):
n=len(t)
m=len(d)
pi = compute_prefix_function(d)
q = 0
i = 0
while i < n:
if d[q]==t[i]:
q=q+1
i = i + 1
else:
if q != 0:
q = pi[q-1]
else:
i = i + 1
if q == m:
print "pattern occurs with shift "+str(i-q)
q = pi[q-1]
def compute_prefix_function(p):
m=len(p)
pi =range(m)
k=1
l = 0
while k < m:
if p[k] <= p[l]:
l = l + 1
pi[k] = l
k = k + 1
else:
if l != 0:
l = pi[l-1]
else:
pi[k] = 0
k = k + 1
return pi
t = 'brownfoxlazydog'
p = 'lazy'
kmp_matcher(t, p)