答案 0 :(得分:0)
choices = ['INT', 'US', 'UK', 'China']
print('\n'.join('{}) {}'.format(i+1, choice) for i, choice in enumerate(choices)))
tries = 0
while tries < 3:
geo = raw_input('Please choose the Geography:')
if not (geo and geo.isdigit() and 1 <= int(geo) <= len(choices)):
print('Error: Provide proper input and tool terminated. Please re Run the tool ')
tries += 1
else:
break
(helpful link)可以帮助您。你可以这样做:
bwdistgeodesic
编辑 - 所有检测点之间的中心:
clc;
clear all;
% read in a sample image -- also see letters.png, bagel.png
J=im2double(imread('circles.png'));
% Normalize and Binarization
b = imresize(J,[100,100]);
th = graythresh(b);
BW1 = im2bw(b, th);
figure;
imshowpair(b, BW1, 'montage');
% the standard skeletonization:
skelimg = bwmorph(BW1,'thin',inf);
mn = bwmorph(skelimg,'branchpoints');
[row, column] = find(mn);
branchpts = [row column];
Endimg = bwmorph(skelimg,'endpoints');
[row,column] = find(Endimg);
Endpts = [row column];
n = size(Endpts,1);
Cntrpts = zeros(n,2);
for ii = 1:n
% compute end & branch points geodesic distance transform
dEnd = bwdistgeodesic(skelimg, Endpts(ii,2), Endpts(ii,1), 'quasi-euclidean');
[~,closestBranchIdx] = min(dEnd(mn));
dStart = bwdistgeodesic(skelimg, branchpts(closestBranchIdx,2), branchpts(closestBranchIdx,1), 'quasi-euclidean');
D = dStart + dEnd;
D = round(D * 8) / 8;
D(isnan(D)) = inf;
paths = imregionalmin(D);
% compute geodesic distance on found path from end point and divide max distance by 2 for center point
dCenter = bwdistgeodesic(paths, Endpts(ii,2), Endpts(ii,1), 'quasi-euclidean');
dCenter(isinf(dCenter)) = nan;
c = nanmax(dCenter(:)) / 2;
[~,idx] = nanmin(abs(dCenter(:) - c));
[yc,xc] = ind2sub(size(dCenter),idx);
Cntrpts(ii,:) = [yc,xc];
end
figure;imshow(skelimg);
hold on;
plot(Cntrpts(:,2),Cntrpts(:,1),'ro')
plot(branchpts(:,2),branchpts(:,1),'g.');
plot(Endpts(:,2),Endpts(:,1),'b.');
hold on;
disp(B)