我是新手。我有一个包含一列和多行的数据集。我想将此列转换为5列。例如,我的数据集如下所示:
Column
----
City
Nation
Area
Metro Area
Urban Area
Shanghai
China
24,000,000
1230040
4244234
New york
America
343423
23423434
343434
Etc
输出应该如下所示
City | Nation | Area | Metro City | Urban Area
----- ------- ------ ------------ -----------
Shangai China 2400000 1230040 4244234
New york America 343423 23423434 343434
数据集的前5行(城市,国家,区域等)需要是5列的名称,我希望在这5列下填充其余数据。请帮忙。
答案 0 :(得分:5)
以下是单行(考虑到您的column
是字符,即df$column <- as.character(df$column)
)
setNames(data.frame(matrix(unlist(df[-c(1:5),]), ncol = 5, byrow = TRUE)), c(unlist(df[1:5,])))
# City Nation Area Metro_Area Urban_Area
#1 Shanghai China 24,000,000 1230040 4244234
#2 New_york America 343423 23423434 343434
答案 1 :(得分:4)
我打算走出困境并猜测你所追踪的数据来自网址:https://en.wikipedia.org/wiki/List_of_largest_cities。
如果是这种情况,我建议您实际尝试重新读取数据(不知道如何将数据放入R中),因为这可能会让您的生活更轻松。
以下是一种读取数据的方法:
library(rvest)
URL <- "https://en.wikipedia.org/wiki/List_of_largest_cities"
XPATH <- '//*[@id="mw-content-text"]/table[2]'
cities <- URL %>%
read_html() %>%
html_nodes(xpath=XPATH) %>%
html_table(fill = TRUE)
这是目前数据的样子。仍然需要清理(注意一些列在“rowspan”和各种类型的合并单元格中有名称):
head(cities[[1]])
## City Nation Image Population Population Population
## 1 Image City proper Metropolitan area Urban area[7]
## 2 Shanghai China 24,256,800[8] 34,750,000[9] 23,416,000[a]
## 3 Karachi Pakistan 23,500,000[10] 25,400,000[11] 25,400,000
## 4 Beijing China 21,516,000[12] 24,900,000[13] 21,009,000
## 5 Dhaka Bangladesh 16,970,105[14] 15,669,000 18,305,671[15][not in citation given]
## 6 Delhi India 16,787,941[16] 24,998,000 21,753,486[17]
从那里,清理可能就像:
cities <- cities[[1]][-1, ]
names(cities) <- c("City", "Nation", "Image", "Pop_City", "Pop_Metro", "Pop_Urban")
cities["Image"] <- NULL
head(cities)
cities[] <- lapply(cities, function(x) type.convert(gsub("\\[.*|,", "", x)))
head(cities)
# City Nation Pop_City Pop_Metro Pop_Urban
# 2 Shanghai China 24256800 34750000 23416000
# 3 Karachi Pakistan 23500000 25400000 25400000
# 4 Beijing China 21516000 24900000 21009000
# 5 Dhaka Bangladesh 16970105 15669000 18305671
# 6 Delhi India 16787941 24998000 21753486
# 7 Lagos Nigeria 16060303 13123000 21000000
str(cities)
# 'data.frame': 163 obs. of 5 variables:
# $ City : Factor w/ 162 levels "Abidjan","Addis Ababa",..: 133 74 12 41 40 84 66 148 53 102 ...
# $ Nation : Factor w/ 59 levels "Afghanistan",..: 13 41 13 7 25 40 54 31 13 25 ...
# $ Pop_City : num 24256800 23500000 21516000 16970105 16787941 ...
# $ Pop_Metro: int 34750000 25400000 24900000 15669000 24998000 13123000 13520000 37843000 44259000 17712000 ...
# $ Pop_Urban: num 23416000 25400000 21009000 18305671 21753486 ...