我有一个庞大的数据集,其中有一列包含每个主题(行)的几个值。以下是简化的示例数据框:
data <- data.frame(subject = c(1:8), sex = c(1, 2, 2, 1, 2, 1, 1, 2),
age = c(35, 29, 31, 46, 64, 57, 49, 58),
v1 = c("2", "0", "3,5", "2 1", "A,4", "B,1,C", "A and B,3", "5, 6 A or C"))
> data
subject sex age v1
1 1 1 35 2
2 2 2 29 0
3 3 2 31 3,5 # separated by a comma
4 4 1 46 2 1 # separated by a blank space
5 5 2 64 A,4
6 6 1 57 B,1,C
7 7 1 49 A and B,3
8 8 2 58 5, 6 A or C
我首先要删除第四列(A
)中的字母(B
,A and B
,v1
,...),然后将第四列拆分为多列如下:
subject sex age x1 x2 x3 x4 x5 x6
1 1 1 35 0 1 0 0 0 0
2 2 2 29 0 0 0 0 0 0
3 3 2 31 0 0 1 0 1 0
4 4 1 46 1 1 0 0 0 0
5 5 2 64 0 0 0 1 0 0
6 6 1 57 1 0 0 0 0 0
7 7 1 49 0 0 1 0 0 0
8 8 2 58 0 0 0 0 1 1
其中第一个主题在x2处取1,因为它在原始数据集中的v1处取2,第三个主题在x3和x5处取1,因为在原始数据集中它在v1处取3和5,依此类推。 / p>
我很感激这个问题的任何帮助。非常感谢。
答案 0 :(得分:5)
您可以将此结果与数据[-4]联系起来并获得所需内容:
0+t(sapply(as.character(data$v1), function(line)
sapply(1:6, function(x) x %in% unlist(strsplit(line, split="\\s|\\,"))) ))
#----------------
[,1] [,2] [,3] [,4] [,5] [,6]
2 0 1 0 0 0 0
0 0 0 0 0 0 0
3,5 0 0 1 0 1 0
2 1 1 1 0 0 0 0
A,4 0 0 0 1 0 0
B,1,C 1 0 0 0 0 0
A and B,3 0 0 1 0 0 0
5, 6 A or C 0 0 0 0 1 1
答案 1 :(得分:4)
一个解决方案:
r <- sapply(strsplit(as.character(dt$v1), "[^0-9]+"), as.numeric)
m <- as.data.frame(t(sapply(r, function(x) {
y <- rep(0, 6)
y[x[!is.na(x)]] <- 1
y
})))
data <- cbind(data[, c("subject", "sex", "age")], m)
# subject sex age V1 V2 V3 V4 V5 V6
# 1 1 1 35 0 1 0 0 0 0
# 2 2 2 29 0 0 0 0 0 0
# 3 3 2 31 0 0 1 0 1 0
# 4 4 1 46 1 1 0 0 0 0
# 5 5 2 64 0 0 0 1 0 0
# 6 6 1 57 1 0 0 0 0 0
# 7 7 1 49 0 0 1 0 0 0
# 8 8 2 58 0 0 0 0 1 1
遵循DWin的强大解决方案,m
可以修改为:
m <- as.data.frame(t(sapply(r, function(x) {
0 + 1:6 %in% x[!is.na(x)]
})))