R 2x3图表 - 在不改变颜色的情况下,将所有6个图形从一个普通图例更改为不同图例

时间:2017-03-21 20:30:37

标签: r ggplot2 lapply facet gridextra

运行此代码后(请注意您必须向下滚动才能查看全部内容),我几乎可以得到我想要的内容。 (见下面的代码图片)

df <- read.table(textConnection(
  'Year ARI ATL BAL BOS CHC CHW CIN CLE COL DET HOU KCR LAA LAD MIA MIL MIN NYM NYY OAK PHI PIT SDP SFG SEA STL TBR TEX TOR WSN
  2016  69  68  89  93  103 78  68  94  75  86  84  81  74  91  79  73  59  87  84  69  71  78  68  87  86  86  68  95  89  95
  2015  79  67  81  78  97  76  64  81  68  74  86  95  85  92  71  68  83  90  87  68  63  98  74  84  76  100 80  88  93  83
  2014  64  79  96  71  73  73  76  85  66  90  70  89  98  94  77  82  70  79  84  88  73  88  77  88  87  90  77  67  83  96
  2013  81  96  85  97  66  63  90  92  74  93  51  86  78  92  62  74  66  74  85  96  73  94  76  76  71  97  92  91  74  86
  2012  81  94  93  69  61  85  97  68  64  88  55  72  89  86  69  83  66  74  95  94  81  79  76  94  75  88  90  93  73  98
  2011  94  89  69  90  71  79  79  80  73  95  56  71  86  82  72  96  63  77  97  74  102 72  71  86  67  90  91  96  81  80
  2010  65  91  66  89  75  88  91  69  83  81  76  67  80  80  80  77  94  79  95  81  97  57  90  92  61  86  96  90  85  69
  2009  70  86  64  95  83  79  78  65  92  86  74  65  97  95  87  80  87  70  103 75  93  62  75  88  85  91  84  87  75  59
  2008  82  72  68  95  97  89  74  81  74  74  86  75  100 84  84  90  88  89  89  75  92  67  63  72  61  86  97  79  86  59
  2007  90  84  69  96  85  72  72  96  90  88  73  69  94  82  71  83  79  88  94  76  89  68  89  71  88  78  66  75  83  73
  2006  76  79  70  86  66  90  80  78  76  95  82  62  89  88  78  75  96  97  97  93  85  67  88  76  78  83  61  80  87  71
  2005  77  90  74  95  79  99  73  93  67  71  89  56  95  71  83  81  83  83  95  88  88  67  82  75  69  100 67  79  80  81
  2004  51  96  78  98  89  83  76  80  68  72  92  58  92  93  83  67  92  71  101 91  86  72  87  91  63  105 70  89  67  67
  2003  84  101 71  95  88  86  69  68  74  43  87  83  77  85  91  68  90  66  101 96  86  75  64  100 93  85  63  71  86  83
  2002  98  101 67  93  67  81  78  74  73  55  84  62  99  92  79  56  94  75  103 103 80  72  66  95  93  97  55  72  78  83
  2001  92  88  63  82  88  83  66  91  73  66  93  65  75  86  76  68  85  82  95  102 86  62  79  90  116 93  62  73  80  68
  2000  85  95  74  85  65  95  85  90  82  79  72  77  82  86  79  73  69  94  87  91  65  69  76  97  91  95  69  71  83  67
  1999  100 103 78  94  67  75  96  97  72  69  97  64  70  77  64  74  63  97  98  87  77  78  74  86  79  75  69  95  84  68
  1998  65  106 79  92  90  80  77  89  77  65  102 72  85  83  54  74  70  88  114 74  75  69  98  89  76  83  63  88  88  65'), header = TRUE)

df2 <- read.table(textConnection(
  'Division    Team    ColorId
  ALEast       BAL      FC4C00 
  ALEast       BOS      C60C30
  ALEast       NYY      1C2841
  ALEast       TBR      79BDEE
  ALEast       TOR      003DA5
  ALCentral    CHW      000000
  ALCentral    CLE      D50032
  ALCentral    DET      0C2340
  ALCentral    KCR      74B4FA
  ALCentral    MIN      CFAB7A
  ALWest       HOU      FF7F00
  ALWest       LAA      BA032E
  ALWest       OAK      00483A
  ALWest       SEA      1C8B85
  ALWest       TEX      003279
  NLEast       ATL      002855
  NLEast       MIA      000000
  NLEast       NYM      002D70
  NLEast       PHI      BA0C2E
  NLEast       WSN      BA122B
  NLCentral    CHC      002F6C
  NLCentral    CIN      BA0C2F
  NLCentral    MIL      012143
  NLCentral    PIT      FFC72B
  NLCentral    STL      C41E3A
  NLWest       ARI      A71930
  NLWest       COL      24135E
  NLWest       LAD      002F6C
  NLWest       SDP      002D62
  NLWest       SFG      FB5B1F'), header = TRUE)

library(tidyr)
library(ggplot2)
library(dplyr)


df <- gather(df, Team, Wins, -Year) %>% 
  mutate(Team = factor(Team, names(df)[2:ncol(df)]))

df3 <- merge(df, df2, by="Team")
df3$Division <- factor(df3$Division, 
                       levels = c("ALEast", "NLEast", "ALCentral", "NLCentral", "ALWest", "NLWest"))

cust <- c("#A71930", "#002855", "#FC4C00", "#C60C30","#002F6C",
          "#000000", "#BA0C2F", "#D50032", "#24135E","#0C2340",
          "#FF7F00", "#74B4FA", "#BA032E", "#002F6C","#000000",
          "#012143", "#CFAB7A", "#002D70", "#1C2841","#00483A",
          "#BA0C2E", "#FFC72B", "#002D62", "#FB5B1F","#1C8B85",
          "#C41E3A", "#79BDEE", "#003279", "#003DA5","#BA122B")

ggplot(df3, aes(x=Year, y=Wins, color = Team)) +
  geom_path(aes(color = Team)) +
  scale_color_manual(values = cust) +
  labs(title = "MLB Wins",
       y = "Wins",
       x = "Year")+
  facet_wrap(~Division, ncol=2, nrow=3) +
  guides(color=guide_legend("Team",override.aes=list(size=3)))

Picture

但是,我希望每个部门都有一个单独的传奇。所以我添加了这段代码,但是我想要的原始颜色不会保留。当然,唯一需要做的改变是在最后一段代码中,但我不知道需要改变什么。

library(gridExtra)

mlb_plots <- lapply(c("ALEast", "NLEast", "ALCentral", "NLCentral", "ALWest", "NLWest"), function(d) {
  ggplot(df3[df3$Division==d,], aes(x=Year, y=Wins, color = Team))+
    geom_path(aes(color = Team)) +
    scale_color_manual(values = cust) +
    labs(title = paste(substr(d, 1, 2), substr(d, 3, nchar(as.character(d)))),  
         y = "Wins",
         x = "Year") +
    guides(color=guide_legend("Team",override.aes=list(size=3)))
})

do.call(grid.arrange, mlb_plots)

enter image description here

1 个答案:

答案 0 :(得分:1)

scale_color_manual使用命名向量,例如:

mlb_plots <- lapply(c("ALEast", "NLEast", "ALCentral", "NLCentral", "ALWest", "NLWest"), function(d) {
  ggplot(df3[df3$Division==d,], aes(x=Year, y=Wins, color = Team))+
    geom_path(aes(color = Team)) +
    scale_color_manual(values = setNames(cust, levels(df3$Team))) +
    labs(title = paste(substr(d, 1, 2), substr(d, 3, nchar(as.character(d)))),  
         y = "Wins",
         x = "Year") +
    guides(color=guide_legend("Team",override.aes=list(size=3)))
})

grid.arrange(grobs=mlb_plots)