我尝试在3D中使用facecolors
使用预定义颜色对表面进行着色。这里的问题是cm.ScalarMappable规范化颜色的表面V
,而plt.cm.jet
没有规范化,因此颜色和颜色条不匹配。我已手动尝试规范化V
(即V_normalized
),但结果仍然不太正确。事实上,V
的最高值应位于曲面的一角,但实际上并未在图像中反映出来。如何确保在表面上修正颜色?
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
# Create data.
X = np.array([[ 50, 100, 150, 200, 250, 300, 350, 400, 450, 500],
[ 50, 100, 150, 200, 250, 300, 350, 400, 450, 500],
[ 50, 100, 150, 200, 250, 300, 350, 400, 450, 500],
[ 50, 100, 150, 200, 250, 300, 350, 400, 450, 500],
[ 50, 100, 150, 200, 250, 300, 350, 400, 450, 500],
[ 50, 100, 150, 200, 250, 300, 350, 400, 450, 500],
[ 50, 100, 150, 200, 250, 300, 350, 400, 450, 500],
[ 50, 100, 150, 200, 250, 300, 350, 400, 450, 500],
[ 50, 100, 150, 200, 250, 300, 350, 400, 450, 500]])
Y = np.array([[ 75, 75, 75, 75, 75, 75, 75, 75, 75, 75],
[125, 125, 125, 125, 125, 125, 125, 125, 125, 125],
[175, 175, 175, 175, 175, 175, 175, 175, 175, 175],
[225, 225, 225, 225, 225, 225, 225, 225, 225, 225],
[275, 275, 275, 275, 275, 275, 275, 275, 275, 275],
[325, 325, 325, 325, 325, 325, 325, 325, 325, 325],
[375, 375, 375, 375, 375, 375, 375, 375, 375, 375],
[425, 425, 425, 425, 425, 425, 425, 425, 425, 425],
[475, 475, 475, 475, 475, 475, 475, 475, 475, 475]])
Z = pd.DataFrame([[2.11, 2.14, 2.12, 2.10, 2.09, 2.08, 2.07, 2.07, 2.08, 2.05],
[2.01, 2.03, 1.99, 1.96, 1.95, 1.93, 1.90, 1.90, 1.92, 1.92],
[1.89, 1.90, 1.90, 1.94, 1.92, 1.89, 1.88, 1.87, 1.86, 1.86],
[1.79, 1.79, 1.75, 1.79, 1.77, 1.78, 1.78, 1.78, 1.79, 1.76],
[1.75, 1.77, 1.8, 1.79, 1.8, 1.77, 1.73, 1.73, 1.77, 1.77],
[1.72, 1.76, 1.77, 1.77, 1.79, 1.8, 1.78, 1.78, 1.74, 1.7],
[1.67, 1.66, 1.69, 1.7, 1.65, 1.62, 1.63, 1.65, 1.7, 1.69],
[1.64, 1.64, 1.61, 1.59, 1.61, 1.67, 1.71, 1.7, 1.72, 1.69],
[1.63, 1.63, 1.62, 1.67, 1.7, 1.67, 1.67, 1.69, 1.69, 1.68]],
index=np.arange(75, 525, 50), columns=np.arange(50, 525, 50))
V = pd.DataFrame([[ 7.53, 7.53, 7.53, 7.53, 7.53, 7.53, 7.53, 7.53, 7.53, 7.53],
[ 7.53, 7.53, 7.53, 7.53, 7.66, 8.09, 8.08, 8.05, 8.05, 8.05],
[ 7.53, 7.77, 8.08, 8.05, 8.19, 8.95, 8.93, 8.79,8.79, 8.62],
[ 8.95, 7.92, 8.95, 8.93, 8.62, 7.93, 8.96, 8.95, 9.09, 8.75],
[ 8.61, 8.95, 8.62, 8.61, 8.95, 8.93, 8.82, 9.42, 9.67, 8.48],
[ 9.23, 8.61, 8.95, 9.24, 9.42, 8.48, 8.47, 8.65, 8.92, 9.17],
[ 8.6 , 9.01, 9.66, 8.05, 9.42, 8.92, 8.81, 7.53, 7.53, 7.53],
[ 9.42, 9.25, 8.65, 8.92, 8.25, 7.97, 8.09, 8.49, 8.49, 7.58],
[ 10.15, 9.79, 9.1 , 9.35, 9.35, 9.35, 9.25, 9.3 , 9.3 , 8.19]],
index=np.arange(75, 525, 50), columns=np.arange(50, 525, 50))
# Create the figure, add a 3d axis, set the viewing angle
# % matplotlib inline # If you are using IPython
fig = plt.figure(figsize=[15,10])
ax = fig.add_subplot(111, projection='3d')
ax.view_init(45,60)
# Normalize in [0, 1] the DataFrame V that defines the color of the surface.
V_normalized = (V - V.min().min())
V_normalized = V_normalized / V_normalized.max().max()
# Plot
ax.plot_surface(X, Y, Z, facecolors=plt.cm.jet(V_normalized))
ax.set_xlabel('x', fontsize=18)
ax.set_ylabel('y', fontsize=18)
ax.set_zlabel('z', fontsize=18)
m = cm.ScalarMappable(cmap=cm.jet)
m.set_array(V)
plt.colorbar(m)
答案 0 :(得分:2)
您的绘图是正确的,尽管您可以使用matplotlib.colors.Normalize
实例简化规范化。
norm = matplotlib.colors.Normalize(vmin=V.min().min(), vmax=V.max().max())
ax.plot_surface(X, Y, Z, facecolors=plt.cm.jet(norm(V)))
m = cm.ScalarMappable(cmap=plt.cm.jet, norm=norm)
m.set_array([])
plt.colorbar(m)
您在网格上看不到10.15
的最大值的原因与众不同:
当在一个维度上有N
个点时,该图具有(N-1)
个面。这意味着不会绘制输入颜色数组的最后一行和一列。
这可以在下图中看到,其中绘制了3x3矩阵,产生2x2面。它们根据颜色数组中的相应值进行着色,使得第一个面具有阵列中第一个元素给出的颜色等。对于最后一个元素,没有面对颜色。
重现此情节的代码:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import matplotlib.colors
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x = np.arange(3)
X,Y = np.meshgrid(x,x)
Z = np.ones_like(X)
V = np.array([[3,2,2],[1,0,3],[2,1,0]])
norm = matplotlib.colors.Normalize(vmin=0, vmax=3)
ax.plot_surface(X, Y, Z, facecolors=plt.cm.jet(norm(V)), shade=False)
m = cm.ScalarMappable(cmap=plt.cm.jet, norm=norm)
m.set_array([])
plt.colorbar(m)
ax.set_xlabel('x')
ax.set_ylabel('y')
plt.show()