我有5个dictionary
,列'天','数字','id',' recordDay',我将所有5个数据帧放在df1 df2
day number id recordDay day number id recordDay
2017-03-21 17 1 1990-01-01 2016-03-21 6 2 1991-02-01
2017-03-22 19 1 1990-01-01 2016-03-22 8 2 1991-02-01
2017-03-23 21 1 1990-01-01 2016-03-23 10 2 1991-02-01
中。我想将5个数据帧保存在5个CSV文件中,文件名基于'id'和'recordDay'。这是dataframe1和dataframe2
'id_1_1991_01_01.csv'
是否可以保存包含此类文件名的5个CSV文件,'id_2_1991_02_01.csv'
,'id_3_1991_03_01.csv'
,'id_4_1991_04_01.csv'
,'id_5_1991_05_01.csv'
,'id_1.csv'
或者'id_5.csv'
... pd.concat(df_dict).to_csv('data.csv', index = False, data_format = '%Y-%m-%d)
会更好吗?
我使用了以下代码,但它只保存了一个CSV文件。
{{1}}
答案 0 :(得分:3)
迭代字典 - 使用.iloc []获取名称的recordID和id值。
df1 = pandas.DataFrame(numpy.random.randn(3, 4), columns=[["day", "number", "id", "recordDay"]])
df2 = pandas.DataFrame(numpy.random.randn(3, 4), columns=[["day", "number", "id", "recordDay"]])
df3 = pandas.DataFrame(numpy.random.randn(3, 4), columns=[["day", "number", "id", "recordDay"]])
df_dict={"data_frame1":df1, "data_frame2": df2, "data_frame3": df3}
for name, df in df_dict.items():
#get the id and recordDay values from each df
df_id=df['id'].iloc[0]
df_record_day=df['recordDay'].iloc[0]
#generate a unique file name based on the id and record
file_name="id_"+str(df_id)+"_"+str(df_record_day)+".csv"
#create the CSV
df.to_csv(file_name, index = False, data_format = '%Y-%m-%d')
或者您可以使用数组列表而不是字典
df_list=[df1, df2, df3]
for df in df_list:
#get the id and recordDay values from each df
df_id=df['id'].iloc[0]
df_record_day=df['recordDay'].iloc[0]
#generate a unique file name based on the id and record
file_name="id_"+str(df_id)+"_"+str(df_record_day)+".csv"
#create the CSV
df.to_csv(file_name, index = False, data_format = '%Y-%m-%d')