data.log
# +------+-----------+-------+
# | temp | viscosity | error |
# +------+-----------+-------+
303 0.68 0.19
308 0.47 0.13
313 0.33 0.09
318 0.24 0.07
323 0.17 0.05
328 0.14 0.04
333 0.10 0.03
# +------+-----------+-------+
gnuplot代码
f(x) = exp(a / x) + b
fit f(x) 'data/data.log' using 1 : 2 via a, b
plot f(x) w l lw 6 lt 1 lc 8
答案 0 :(得分:2)
我觉得这不合适。也许这个模型错了?
我不是这种粘性的东西,但有些人似乎使用的是具有b*exp(a/x)
而不是b+exp(a/x)
的Arrhenius型号:
set terminal pngcairo
set output "viscosity.png"
set xrange [303:333]
f(x) = b*exp(a/x)
fit f(x) 'data.log' using 1 : 2 via a, b
plot f(x) w l , 'data.log' w p pt 7
答案 1 :(得分:1)
在这种情况下,二次方程更适合您的数据:
set terminal pngcairo enhanced color dashed font "Alegreya, 14" \
rounded size 800, 600
set output "data.png"
f(x) = exp(a/x)+b
g(x) = c*x**2+d*x+e
fit f(x) "data.log" using 1:2 via a, b
fit g(x) "data.log" using 1:2 via c, d, e
plot f(x) w l ls 1, g(x) w l ls 2, "data.log" using 1:2 with p ls 3
导致:
答案 2 :(得分:0)
您可以考虑在拟合方程中使用偏移量“x”,如下所示:
f(x)= exp(a / x + xoffset)+ b
我有如下所示的良好(未加权)结果,如附图所示:
a = 7.2818728249106498E+03
b = 2.8379411855001473E-02
xoffset = -2.4460749606962697E+01
Degrees of freedom (error): 4
Degrees of freedom (regression): 2
Chi-squared: 9.7614501663e-05
R-squared: 0.999624806989
R-squared adjusted: 0.999437210483
Model F-statistic: 5328.58970008
Model F-statistic p-value: 1.40769795487e-07
Model log-likelihood: 29.1988115147
AIC: -7.48537471847
BIC: -7.50855608316
Root Mean Squared Error (RMSE): 0.00373429093792
a = 7.2818728249106498E+03
std err: 6.89975E+04
t-stat: 2.77221E+01
p-stat: 1.00714E-05
95% confidence intervals: [6.55257E+03, 8.01117E+03]
b = 2.8379411855001473E-02
std err: 9.37027E-05
t-stat: 2.93175E+00
p-stat: 4.27390E-02
95% confidence intervals: [1.50339E-03, 5.52554E-02]
xoffset = -2.4460749606962697E+01
std err: 7.69693E-01
t-stat: -2.78812E+01
p-stat: 9.84447E-06
95% confidence intervals: [-2.68966E+01, -2.20249E+01]
Coefficient Covariance Matrix
[ 2.82734819e+09 9.81055346e+04 -9.44267056e+06]
[ 9.81055346e+04 3.83970212e+00 -3.28710031e+02]
[ -9.44267056e+06 -3.28710031e+02 3.15401191e+04]