我有一组6个项目,我们称它们为“1”到“6”。我想要做的是创建另一个包含这些项目的所有可能组合(订单?)的列表。在每种可能的组合中,必须包括所有6个项目,并且不能重复。它可能是向后组合,因为它是一组不同的数字。
继承我的想法:
import random
items = [1,2,3,4,5,6]
ListOfCombinations = []
while True:
random.shuffle(items)
print(items)
string = " ".join(str(e) for e in items)
if string not in ListOfCombinations:
ListOfCombinations.append(string)
我在这里尝试做的是创建一个随机顺序并将其添加到第二个列表中(如果它尚未在里面)。但我觉得必须有不同的做法,我可能做错了。我是python的菜鸟,所以请帮助我们!
答案 0 :(得分:5)
您正在寻找permutations()
库中的itertools
。
from itertools import permutations
# this will create all permutations of length 3 of [0,1,2]
list(permutations(range(3), 3))
# returns:
[(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)]
答案 1 :(得分:0)
如果我理解正确,您基本上想要的是第二个列表,其中包含原始列表的每个permutation。这将导致第二个n!不同的排列,或者在你的情况下,6! = 720种不同的排列
您的方法最终可能会起作用,但是您似乎认识到它远非高效或可靠。
要在Python 2.6+ / 3+中执行此操作,请使用itertools.permutations。这将返回一个生成器,然后可以将其转换为列表。
#include <cuda_runtime.h>
#include <device_launch_parameters.h>
#include <cufft.h>
#include <stdlib.h>
#include <iostream>
#define N 4 //4 X 4 // N is the sidelength of the image -> 16 pixels in entire image
#define block_size_x 2
#define block_size_y 2
__global__ void real2complex(cufftComplex *c, float *a, int n);
__global__ void complex2real_scaled(float *a, cufftComplex *c, float scale, int n);
__global__ void solve_poisson(cufftComplex *c, float *kx, float *ky, int n);
int main()
{
float *kx, *ky, *r;
kx = (float *)malloc(sizeof(float) * N);
ky = (float *)malloc(sizeof(float) * N);
r = (float *)malloc(sizeof(float) * N * N);
float *kx_d, *ky_d, *r_d;
cufftComplex *r_complex_d;
cudaMalloc((void **)&kx_d, sizeof(float) * N);
cudaMalloc((void **)&ky_d, sizeof(float) * N);
cudaMalloc((void **)&r_d, sizeof(float) * N * N);
cudaMalloc((void **)&r_complex_d, sizeof(cufftComplex) * N * N);
for (int y = 0; y < N; y++)
for (int x = 0; x < N; x++)
r[x + y * N] = rand() / (float)RAND_MAX;
//r[x + y * N] = sin(exp(-((x - N / 2.0f) * (x - N / 2.0f) + (N / 2.0f - y) * (N / 2.0f - y)) / (20 * 20))) * 255 / sin(1); //Here is sample data that will high values at the center of the image and low values as you go farther and farther away from the center.
float* r_inital = (float *)malloc(sizeof(float) * N * N);
for (int i = 0; i < N * N; i++)
r_inital[i] = r[i];
for (int i = 0; i < N; i++)
{
kx[i] = i - N / 2.0f; //centers kx values to be at center of image
ky[i] = N / 2.0f - i; //centers ky values to be at center of image
}
cudaMemcpy(kx_d, kx, sizeof(float) * N, cudaMemcpyHostToDevice);
cudaMemcpy(ky_d, ky, sizeof(float) * N, cudaMemcpyHostToDevice);
cudaMemcpy(r_d, r, sizeof(float) * N * N, cudaMemcpyHostToDevice);
cufftHandle plan;
cufftPlan2d(&plan, N, N, CUFFT_C2C);
/* Compute the execution configuration, block_size_x*block_size_y = number of threads */
dim3 dimBlock(block_size_x, block_size_y);
dim3 dimGrid(N / dimBlock.x, N / dimBlock.y);
/* Handle N not multiple of block_size_x or block_size_y */
if (N % block_size_x != 0) dimGrid.x += 1;
if (N % block_size_y != 0) dimGrid.y += 1;
real2complex << < dimGrid, dimBlock >> > (r_complex_d, r_d, N);
cufftExecC2C(plan, r_complex_d, r_complex_d, CUFFT_FORWARD);
solve_poisson << <dimGrid, dimBlock >> > (r_complex_d, kx_d, ky_d, N);
cufftExecC2C(plan, r_complex_d, r_complex_d, CUFFT_INVERSE);
float scale = 1.0f / (N * N);
complex2real_scaled << <dimGrid, dimBlock >> > (r_d, r_complex_d, scale, N);
cudaMemcpy(r, r_d, sizeof(float) * N * N, cudaMemcpyDeviceToHost);
for (int i = 0; i < N * N; i++)
std::cout << i << "\tr_initial: " << r_inital[i] << "\tr: " << r[i] << std::endl;
system("pause");
/* Destroy plan and clean up memory on device*/
free(kx);
free(ky);
free(r);
free(r_inital);
cufftDestroy(plan);
cudaFree(r_complex_d);
cudaFree(kx_d);
}
__global__ void real2complex(cufftComplex *c, float *a, int n)
{
/* compute idx and idy, the location of the element in the original NxN array */
int idx = blockIdx.x * blockDim.x + threadIdx.x;
int idy = blockIdx.y * blockDim.y + threadIdx.y;
if (idx < n && idy < n)
{
int index = idx + idy * n;
c[index].x = a[index];
c[index].y = 0.0f;
}
}
__global__ void complex2real_scaled(float *a, cufftComplex *c, float scale, int n)
{
/* compute idx and idy, the location of the element in the original NxN array */
int idx = blockIdx.x * blockDim.x + threadIdx.x;
int idy = blockIdx.y * blockDim.y + threadIdx.y;
if (idx < n && idy < n)
{
int index = idx + idy * n;
a[index] = scale * c[index].x;
}
}
__global__ void solve_poisson(cufftComplex *c, float *kx, float *ky, int n)
{
/* compute idx and idy, the location of the element in the original NxN array */
int idx = blockIdx.x * blockDim.x + threadIdx.x;
int idy = blockIdx.y * blockDim.y + threadIdx.y;
if (idx < n && idy < n)
{
int index = idx + idy * n;
float scale = -(kx[idx] * kx[idx] + ky[idy] * ky[idy]) + 0.00001f;
if (idx == 0 && idy == 0) scale = 1.0f;
scale = 1.0f / scale;
c[index].x *= scale;
c[index].y *= scale;
}
}
这将打印所有6个!自然数最多为6的排列