R LDA主题模型如何获得delta的后验

时间:2017-03-15 10:36:42

标签: r lda topic-modeling topicmodels

我使用R包主题模型运行LDA,并且我一直在尝试获取delta的值,在我的理解中,delta是主题上单词的dirichlet的参数。但是,我无法访问该值。 我只是设法使用

获得初始值
LDA@control@delta

slot(LDA@control,"delta")

我知道如何为后验分布获取alpha(文档主题的Dir参数),这只是slot(LDA,"alpha")但是如何获得delta?

非常感谢!

1 个答案:

答案 0 :(得分:0)

topicmodels使用抽样方法的控制参数列表,这里是Gibbs抽样。默认情况下,alpha = 50/k中会假设delta = 0.1control_LDA_Gibbs的值 - 您当然可以指定其他值。也许您没有正确指定控件。在任何情况下,这里都是一个简短的代码示例,它应该提供有关输出中deltaprior的信息。我希望这有助于解决您的问题。

library(text2vec)
library(topicmodels)
library(slam) #to convert dtm to simple triplet matrix for topicmodels

ntopics <- 10
alphaprior <- 0.1
deltaprior <- 0.001
niter <- 1000

seedpar <- 0 

docssubset <- 1:500

docs <- movie_review$review[docssubset]

#Generate document term matrix with text2vec    
tokens = docs %>% 
  tolower %>% 
  word_tokenizer

it = itoken(tokens, ids = movie_review$id[docssubset], progressbar = FALSE)

vocab = create_vocabulary(it) %>%
  prune_vocabulary(term_count_min = 10, doc_proportion_max = 0.2)

vectorizer = vocab_vectorizer(vocab)

dtm = create_dtm(it, vectorizer, type = "dgTMatrix")

control_Gibbs_topicmodels <- list(
                            alpha = alphaprior
                            ,delta = deltaprior 
                            ,iter = niter
                            ,burnin = 100                           
                            ,keep = 50
                            ,nstart = 1
                            ,best = TRUE
                            ,seed = seedpar

)


ldatopicmodels <- LDA(as.simple_triplet_matrix(dtm)
                      ,k = ntopics
                      ,method = "Gibbs"
                      ,control = control_Gibbs_topicmodels 
                      )

str(ldatopicmodels)

ldatopicmodels@control@delta